summaryrefslogtreecommitdiffstats
path: root/ic_experiments/ml2.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'ic_experiments/ml2.pyx')
-rw-r--r--ic_experiments/ml2.pyx95
1 files changed, 95 insertions, 0 deletions
diff --git a/ic_experiments/ml2.pyx b/ic_experiments/ml2.pyx
new file mode 100644
index 0000000..1458683
--- /dev/null
+++ b/ic_experiments/ml2.pyx
@@ -0,0 +1,95 @@
+# cython: boundscheck=False, cdivision=True
+import numpy as np
+cimport numpy as np
+from libc.math cimport log, exp
+
+DTYPE = np.float64
+ctypedef np.float_t DTYPE_t
+
+cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda,
+ DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
+ """weight for successful infection, exponential time model"""
+ cdef DTYPE_t structural, temporal, result
+ structural = delta ** dist
+ # structural = delta/(1. + 1./(w1*lmbda) + 1./(w2*lmbda) + 1./(w3*lmbda))
+ temporal = log(exp(alpha)-1.) - alpha*dt
+ # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
+ result = log(structural) + temporal
+ return result
+
+cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda,
+ DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
+ """weight for failed infection, exponential time model"""
+ cdef DTYPE_t structural, temporal, result
+ structural = delta ** dist
+ # structural = delta/(1. + 1./(w1*lmbda) + 1./(w2*lmbda) + 1./(w3*lmbda))
+ temporal = exp(-alpha * dt)
+ # temporal = 1. - 1. / (1. + dt/alpha)**0.01
+ result = log(1. - structural + structural * temporal)
+ return result
+
+def ml2(dict root_victims, dict victims, dict non_victims,
+ DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda):
+ cdef:
+ int n_roots, n_victims, roots, i, dist, dt, t, l
+ DTYPE_t ll
+ list parents, failures, successes
+ n_roots, n_victims = len(root_victims), len(victims)
+ cdef:
+ np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
+ np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] infectors = np.zeros(n_victims, dtype=DTYPE)
+
+ # loop through victims
+ for i, parents in enumerate(victims.itervalues()):
+ # for each victim node i, compute the probability that all its parents
+ # fail to infect it, also computes the probability that its most
+ # likely parent infects it
+ failures = [weight_failure(dist, dt, alpha, delta, lmbda, w1, w2, w3)
+ for (prnt, dist, dt, w1, w2, w3) in parents]
+ probs_fail[i] = sum(failures)
+ successes = [weight_success(dist, dt, alpha, delta, lmbda, w1, w2, w3)
+ for (prnt, dist, dt, w1, w2, w3) in parents]
+ dists = [dist for (prnt, dist, dt, w1, w2, w3) in parents]
+ dts = [dt for (prnt, dist, dt, w1, w2, w3) in parents]
+ prnts = [prnt for (prnt, dist, dt, w1, w2, w3) in parents]
+ # find parent that maximizes log(p) - log(\tilde{p})
+ # probs[i] = max(s - failures[l] for l, s in enumerate(successes))
+ probs[i] = float("-inf")
+ for l, s in enumerate(successes):
+ prob = s - failures[l]
+ if prob > probs[i]:
+ probs[i] = prob
+ infectors[i] = prnts[l]
+ parent_dists[i] = dists[l]
+ parent_dts[i] = dts[l]
+
+ # loop through non-victims
+ for i, parents in enumerate(non_victims.itervalues()):
+ # for each non victim node, compute the probability that all its
+ # parents fail to infect it
+ failures = [weight_failure(dist, dt, alpha, delta, lmbda, w1, w2, w3)
+ for (prnt, dist, dt, w1, w2, w3) in parents]
+ probs_nv[i] = sum(failures)
+
+ # calculate log likelihood
+ ll = probs_fail.sum() # add probability that all edges to victims fail
+ ll += probs_nv.sum() # add probability that all edges to non_victims fail
+ ll += probs.sum() # add probability for realized edges and subtract probability these edges fail
+
+ roots = n_roots
+ # print n_nodes, n_roots, n_victims, max_i, roots
+ # print parent_dists[1:100]
+ # print parent_dts[1:100]
+ # print victims.keys()
+ # print infectors
+ # print np.mean(parent_dists)
+ # print np.mean(parent_dts)
+
+ with open('../../Results/infectors.csv', 'w') as infectors_file:
+ for i, infector in enumerate(infectors):
+ infectors_file.write("%s, %s\n" % ((victims.keys())[i], infector))
+ return (lmbda, roots, ll)