library(igraph) setwd("/Users/Ben/Documents/Harvard/Fall 2014/CS 284r Social Data Mining/Cascade Project/") load('Data/dag_dat.RData') load('Data/lcc.RData') n.infections = length(vic_ids) n.nodes = (vcount(lcc)) n.days = as.numeric(max(dag_dat$t2) - min(dag_dat$t1)) gamma = n.infections/(n.nodes*n.days) vic = rep(FALSE,n.nodes) for(t in 1:n.days){ if (t%%1000==0) print(t) infections = which(runif(n.nodes)0 V(lcc.sim)$vic_date = vic vic_ids.sim = which(vic>0) # save(lcc.sim,vic_ids.sim, file='Data/lcc_sim1b.RData') #### simulation method 2 #### load('Data/dag_dat.RData') load('Data/lcc.RData') n.infections = length(vic_ids) n.days = as.numeric(max(dag_dat$t2) - min(dag_dat$t1)) lcc.sim = lcc V(lcc.sim)$vic_date[vic_ids] = sample(n.days, n.infections, replace=TRUE) vic_ids.sim = which(V(lcc.sim)$vic) # save(lcc.sim, vic_ids.sim, file='Data/lcc_sim2a.RData')