# library(igraph) # setwd("~/Documents/Cascade Project/") # # load('Results/dag_dat_all.RData') # load('Results/weight-12-1-14.RData') # load('Results/hyper-lcc.RData') # dag = graph.edgelist(as.matrix(dag_dat[,1:2])) # dag = set.edge.attribute(dag,'weight',value=weight) # dag_dat = dag_dat[which(E(dag)$weight>=0.4),] # dag = delete.edges(dag, which(E(dag)$weight<0.4)) table(clusters(dag)$csize) clusters = clusters(dag) membership = clusters$membership csize = clusters$csize order = rev(order(csize)) #use table not hist plot(sizes,counts,log='xy',type='o',lwd=3, xlab='Size of Cascade', ylab='Number of Cascades', main='Distribution of Cascade Sizes') i = 4 V = which(clusters(dag)$membership==order[i]) # get all nodes in cluster cc = induced.subgraph(dag,V) Vi = vic_ids[V] Ei = intersect(which(dag_dat_vics$from[realized] %in% Vi),which(dag_dat_vics$to[realized] %in% Vi)) cc_dat = (dag_dat_vics[realized,])[Ei,] ### plot cascade ### cols = rep('lightblue',vcount(cc)) seed = which(degree(cc,mode='in')==0) cols[seed] = 'red' plot(cc,vertex.size=10,edge.arrow.size=0.5,vertex.color=cols,vertex.label.cex=1, edge.width=E(cc)$weight*20/max(E(cc)$weight),layout=layout.reingold.tilford(cc,root=seed), vertex.label=V(hyp_lcc)$vic.day[Vi]) plot(cc,vertex.size=10,edge.arrow.size=0.5,vertex.color=cols,vertex.label.cex=1, layout=layout.reingold.tilford(cc,root=seed)) ### basic graph statistics trl = mean(transitivity(cc,type='local',isolates='zero')) apl = average.path.length(cc) indeg = degree(cc,mode='in') outdeg = degree(cc,mode='out') ds = mean(cc_dat$dist) ### node demographic statistics from = vic_ids[cc_dat$from] to = vic_ids[cc_dat$to] V(lcc)$sex[from] == V(lcc)$sex[to] V(lcc)$sex[Vi] V(lcc)$race[Vi] as.numeric(V(lcc)$age[Vi]) V(lcc)$gang.member[Vi] V(lcc)$gang.name[Vi] V(lcc)$faction.name[Vi]