library(igraph) setwd('~/Documents/Cascade Project') load('Raw Data/lcc.RData') load('Results/hyper-lcc.RData') load('Results/dag_dat_all.RData') source('Scripts/temporal.R') source('Scripts/structural.R') ##### Initialize data formula = vic ~ sex + race + age + gang.member + gang.name lcc_verts$sex = as.factor(lcc_verts$sex) lcc_verts$race = as.factor(lcc_verts$race) lcc_verts$age = as.numeric(lcc_verts$age) lcc_verts$gang.name = as.factor(lcc_verts$gang.name) # sum(hyp_lcc_verts$vic)/length(days) ##### Loop through days alpha = 1/100 gamma = 0.18 days = 70:max(hyp_lcc_verts$vic.day, na.rm=T) lambdas = 0#c(0, exp(seq(log(0.0000001), log(.0005), length.out=150)), 1) nvics = sum(hyp_lcc_verts$vic.day %in% days) correct_rank = matrix(nrow=nvics, ncol=length(lambdas)) # correct_rank1 = correct_rank2 = correct_rank3 = c() edges_all = dag_dat_all[dag_dat_all$dist<2,] ptm = proc.time() for (day in days){ if (day %% 100 == 0) print(day) ##### Demographics model # vics = match(unique(hyp_lcc_verts$ir_no[which(hyp_lcc_verts$vic.day