library(igraph) setwd("~/Documents/Violence Cascades/") load('Results/hyper-lcc.RData') d = remove.edge.attribute(person,'weight') lcc = induced.subgraph(d,which(clusters(d)$membership==which.max(clusters(d)$csize))) ##### Small-World Analysis trl = mean(transitivity(lcc,type='local',isolates='zero')) apl = average.path.length(lcc) cat('Local Transitivity =', trl);cat('\nAverage Path Length =', apl) nsim = 5 ER_sim = data.frame(trl=rep(0,nsim),apl=0) for(i in 1:nsim){ print(i) erg = erdos.renyi.game(n=vcount(lcc),p.or.m=ecount(lcc),type='gnm') erg = induced.subgraph(erg,which(clusters(erg)$membership==which.max(clusters(erg)$csize))) ER_sim[i,1] = mean(transitivity(erg,type='local',isolates='zero')) ER_sim[i,2] = average.path.length(erg) } S = data.frame(C_dat = trl, L_dat = apl, C_ER=mean(ER_sim$trl), L_ER=mean(ER_sim$apl), S_ER=mean((trl/ER_sim$trl)/(apl/ER_sim$apl))) S ##### Degree Distribution plot(degree.distribution(lcc)*vcount(lcc),log='xy',type='l',col='red',lwd=2, xlab='Degree', ylab='Number of Vertices', main='Degree Distribution') ##### Victims vic_ids = which(V(lcc)$vic==TRUE) non_vic_ids = which(V(lcc)$vic==FALSE) hist(as.numeric(V(lcc)$vic_date[vic_ids]),100,col='lightblue', xlab='Day of Study Period',main='Infections During the Study Period') # n infections sum(!is.na(lcc_verts$fatal_day)) sum(!is.na(lcc_verts$nonfatal_day_1)) sum(!is.na(lcc_verts$nonfatal_day_2)) sum(!is.na(lcc_verts$nonfatal_day_3)) sum(!is.na(lcc_verts$nonfatal_day_4)) sum(!is.na(lcc_verts$nonfatal_day_5)) sum(sum(!is.na(lcc_verts$fatal_day)), sum(!is.na(lcc_verts$nonfatal_day_1)), sum(!is.na(lcc_verts$nonfatal_day_2)), sum(!is.na(lcc_verts$nonfatal_day_3)), sum(!is.na(lcc_verts$nonfatal_day_4)), sum(!is.na(lcc_verts$nonfatal_day_5)))