library(igraph) setwd("~/Documents/Cascade Project/") load('Results/hyper-lcc.RData') vic_ids = which(V(hyp_lcc)$vic==TRUE) edgeWeights = function(eis){return(c(hyp_lcc_edges$weight[eis],Inf,Inf)[1:3])} dag_dat_all = data.frame(matrix(nrow=1,ncol=8)) hyp_lcc2 = remove.edge.attribute(hyp_lcc,'weight') ei = 1 ptm=proc.time() for (u in vic_ids){ if ((which(vic_ids==u) %% 1000)==0) print(which(vic_ids==u)) tu = hyp_lcc_verts$vic.day[u] u_spawn = hyp_lcc_verts$spawn.date[u] nbhd = unlist(neighborhood(hyp_lcc,nodes=u,order=3)) # get nodes within neighborhood nbhd = nbhd[-1] # don't want to include u in the neighborhood tvs = hyp_lcc_verts$vic.day[nbhd] v_spawn = hyp_lcc_verts$spawn.date[nbhd] nbhd = nbhd[tu>v_spawn & (is.na(tvs) | tu0){ min_time[i] = min(dag_dat_vics$t2[rows]-dag_dat_vics$t1[rows]) min_time_dist[i] = dag_dat_vics$dist[rows[which.min(dag_dat_vics$t2[rows]-dag_dat_vics$t1[rows])]] i = i + 1 } } median(min_time) mean(min_time<100) save(min_time_1,min_time_2,min_time_3,file='Results/min_inf_time.RData')