################### # load crime data library(xlsx) setwd("~/Documents/Violence Cascades/Raw Data/") data = read.xlsx('Chicago-crime-data.xlsx',1) # crime rate plot(data$Year,data$Index.Rate.per.100.000,type='l',col='#1f78b4',lwd=2, xlab='',ylab='Rate per 100,000',cex.lab=.6,cex.axis=.6) # homocide rate plot(data$Year,data$Homicide.Rate,type='l',col='#1f78b4',lwd=2, xlab='',ylab='Rate per 100,000',cex.lab=.6,cex.axis=.6) ################### # load shootings data # for lcc load('lcc.RData') vic_dates = as.Date(unlist(lcc_verts[,10:15])) vic_dates = vic_dates[!is.na(vic_dates)] vdh = hist(vic_dates, breaks='months') plot(vdh$mids,vdh$counts,type='l',col='#1f78b4',lwd=2, xlab='',ylab='Shootings',xaxt='n',cex.lab=.6,cex.axis=.6) axis(1,at=vdh$breaks[seq(1,102,12)], lab=2006:2014,cex.axis=.6) # for all recorded shootings shootings <- read.csv("shooting-data-withdate2.csv", header = T) victims = shootings[shootings$INV_PARTY_TYPE_CD=="VIC",] victims = victims[!is.na(victims$IR_NO),] victims$ir2 <- paste("ir", victims$IR_NO) # get murder victim attributes murders = read.csv("murder-victims-13nov.csv", header=T) murders = murders[!is.na(murders$VICTIM_IR_NO),] murders = murders[murders$INJURY_DESCR=="SHOT",] murders = murders[match(unique(murders$VICTIM_IR_NO),murders$VICTIM_IR_NO),] murders = murders[as.Date(murders$INJURY_DATE,format='%m/%d/%y')>=start_date,] murders$ir2 = paste("ir", murders$VICTIM_IR_NO) # clear nonfatals that led to death v = victims[victims$IR_NO %in% murders$VICTIM_IR_NO,] rows = c() for(i in 1:dim(v)[1]){ row = which(rownames(victims)==as.numeric(rownames(v[i,]))) m = murders[murders$VICTIM_IR_NO==v$IR_NO[i],] dup = as.Date(v$INCIDENT_DATE[i],format='%m/%d/%y') %in% as.Date(m$INJURY_DATE,format='%m/%d/%y') if(dup==T) rows = c(rows,row) } victims = victims[-rows,] vic_dates = c(as.Date(murders$INJURY_DATE,format='%m/%d/%y'),as.Date(victims$INCIDENT_DATE,format='%m/%d/%y'))