library(igraph) setwd("~/Documents/Cascade Project/") load('Results/hyper-lcc.RData') vic_ids = which(V(hyp_lcc)$vic==1) n.infections = length(vic_ids) n.days = max(hyp_lcc_verts$vic.day,na.rm=T) - min(hyp_lcc_verts$vic.day,na.rm=T) inf.dates = hyp_lcc_verts$vic.day[vic_ids] ptm = proc.time() n = 1500 mean.time = matrix(0,3,n) med.time = matrix(0,3,n) mean.50 = matrix(0,3,n) mean.100 = matrix(0,3,n) n.vicpairs = matrix(0,3,n) for(sim in 1:3){ print(paste('sim:',sim)) for(q in 1:n){ if (q%%250==0) print(paste('run:',q)) graph = hyp_lcc if (sim<3) sim.dates = sample(n.days, n.infections, replace=TRUE) # sims 1 + 2 if (sim==3) sim.dates = sample(inf.dates) # sim 3 if (sim==1) vics = sample(vcount(hyp_lcc), n.infections, replace=FALSE) # sim 1 if (sim>1) vics = vic_ids # sims 2 + 3 if (sim==0) {vics = vic_ids; sim.dates = inf.dates} # data vic.time = c() for (i in 1:n.infections){ u = vics[i] nbhd = unlist(neighborhood(graph, nodes=u, order=1)) nbhd = intersect(vic_ids,nbhd) nbhd = setdiff(nbhd,u) nbhd = nbhd[u