# cython: boundscheck=False, cdivision=True import numpy as np cimport numpy as np from libc.math cimport log, exp DTYPE = np.float64 ctypedef np.float_t DTYPE_t cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): """weight for successful infection, exponential time model""" cdef DTYPE_t structural, temporal, result structural = delta ** dist temporal = log(exp(alpha)-1.) - alpha*dt/1. result = log(structural) + temporal return result cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): """weight for failed infection, exponential time model""" cdef DTYPE_t structural, temporal, result structural = delta ** dist temporal = exp(-alpha * dt/1.) result = log(1. - structural + structural * temporal) return result def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age, DTYPE_t alpha, DTYPE_t delta): cdef: int n_roots, n_victims, roots, i, dist, dt, t, l DTYPE_t beta, ll, beta_add, max_beta, max_beta_add list parents, failures, successes n_roots, n_victims = len(root_victims), len(victims) n_nodes = 5000 cdef: np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) # loop through victims for i, parents in enumerate(victims.itervalues()): # for each victim node i, compute the probability that all its parents # fail to infect it, also computes the probability that its most # likely parent infects it failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) for (prnt, dist, dt, w1, w2, w3) in parents] probs_fail[i] = sum(failures) successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) for (prnt, dist, dt, w1, w2, w3) in parents] dists = [dist for (prnt, dist, dt, w1, w2, w3) in parents] dts = [dt for (prnt, dist, dt, w1, w2, w3) in parents] # find parent that maximizes log(p) - log(\tilde{p}) # probs[i] = max(s - failures[l] for l, s in enumerate(successes)) probs[i] = float("-inf") for l, s in enumerate(successes): prob = s - failures[l] if prob > probs[i]: probs[i] = prob parent_dists[i] = dists[l] parent_dts[i] = dts[l] # probs_fail[i] = failures[l] # loop through non-victims for i, parents in enumerate(non_victims.itervalues()): # for each non victim node, compute the probability that all its # parents fail to infect it failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) for (prnt, dist, dt, w1, w2, w3) in parents] probs_nv[i] = sum(failures) # calculate log likelihood ll = probs_fail.sum() # add probability that all edges to all victims fail ll += probs_nv.sum() # add probability that all edges to non_victims fail max_beta_add = float('-inf') # iterate over all victim nodes to find the optimal threshold for beta in np.arange(0.01, 1., .01): thresh = log(beta/(1000.*(1.-beta))) seeds = probs=thresh roots = n_roots + sum(seeds) beta_add = 0. # add probability for realized edges and subtract probability these edges fail beta_add += (probs[non_seeds]).sum() # add probability for the seeds and non-seeds beta_add += roots * log(beta/1000.) + (n_nodes-roots) * log(1. - beta) if beta_add > max_beta_add: max_beta = beta max_roots = roots max_beta_add = beta_add # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots ll += max_beta_add roots = max_roots beta = max_beta # print n_nodes, n_roots, n_victims, max_i, roots return (beta, roots, ll)