# cython: boundscheck=False, cdivision=True import numpy as np cimport numpy as np from libc.math cimport log, exp DTYPE = np.float64 ctypedef np.float_t DTYPE_t cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma): cdef DTYPE_t structural, temporal, result structural = delta ** dist temporal = exp(-alpha * dt) * (1 - exp(-alpha)) result = structural * temporal return result cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma): cdef DTYPE_t structural, temporal, result structural = delta ** dist temporal = 1. - exp(-alpha * dt) result = 1. - structural * temporal return result def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma=10): cdef: int n_roots, n_victims, n_nodes, roots, i, dist, dt, t DTYPE_t beta, all_failures list parents, failures, successes n_roots, n_victims = len(root_victims), len(victims) n_nodes = n_victims + len(non_victims) cdef: np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) for i, parents in enumerate(victims.itervalues()): failures = [log(weight_failure(dist, dt, alpha, delta, gamma)) for (dist, dt) in parents] all_failures = sum(failures) successes = [log(weight_success(dist, dt, alpha, delta, gamma)) for (dist, dt) in parents] probs[i] = max(s - failures[i] for i, s in enumerate(successes)) probs_fail[i] = all_failures for i, parents in enumerate(non_victims.itervalues()): failures = [log(weight_failure(dist, dt, alpha, delta, gamma)) for (dist, dt) in parents] probs_nv[i] = sum(failures) probs.sort() probs = probs[::-1] cdef: np.ndarray[DTYPE_t] cums = probs.cumsum() for i in xrange(n_victims - 1, 0, -1): roots = n_victims - 1 - i beta = 1. / (1. + exp(-probs[i])) if beta > float(roots) / float(n_nodes): break else: print "alpha: {0}, delta: {1}. Everyone is a root".format(alpha, delta) roots = n_victims beta = float(roots) / float(n_nodes) return (beta, roots, roots * log(beta) + (n_nodes - roots) * log(1 - beta) + cums[i] + probs_nv.sum() + probs_fail.sum())