# cython: boundscheck=False, cdivision=True import numpy as np cimport numpy as np from libc.math cimport log, exp DTYPE = np.float64 ctypedef np.float_t DTYPE_t cdef DTYPE_t plogis(DTYPE_t weight, DTYPE_t delta): return 1./(1. + exp(-weight/delta)) cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): """weight for successful infection, exponential time model""" cdef DTYPE_t structural, temporal, result structural = dist * log(delta) # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) temporal = log(exp(alpha)-1.) - alpha*dt # temporal = 1 - exp(-alpha*dt) # if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR' # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 result = structural + temporal # print 'st', structural, temporal return result cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): """weight for failed infection, exponential time model""" cdef DTYPE_t structural, temporal, result structural = delta ** dist # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) temporal = exp(-alpha * dt) # temporal = 1. - 1. / (1. + dt/alpha)**0.01 result = log(1. - structural + structural * temporal) # print 'stnv', structural, temporal return result def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age, DTYPE_t alpha, DTYPE_t delta): cdef: int n_roots, n_victims, n_nodes, roots, i, dist, dt, t, l DTYPE_t beta, ll list parents, failures, successes n_roots, n_victims = len(root_victims), len(victims) n_nodes = 148152 cdef: np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) # loop through victims for i, parents in enumerate(victims.itervalues()): # for each victim node i, compute the probability that all its parents # fail to infect it, also computes the probability that its most # likely parent infects it failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) for (dist, dt, w1, w2, w3) in parents] probs_fail[i] = sum(failures) successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) for (dist, dt, w1, w2, w3) in parents] # find parent that maximizes log(p) - log(\tilde{p}) probs[i] = max(s - failures[l] for l, s in enumerate(successes)) # loop through non-victims for i, parents in enumerate(non_victims.itervalues()): # for each non victim node, compute the probability that all its # parents fail to infect it failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) for (dist, dt, w1, w2, w3) in parents] probs_nv[i] = sum(failures) # print successes # print failures # print probs # calculate log likelihood # probs.sort(); probs = probs[::-1] # sort probs in descending order # cdef: # np.ndarray[DTYPE_t] cums = probs.cumsum() ll = probs_fail.sum() # add probability that all edges to victims fail ll += probs_nv.sum() # add probability that all edges to non_victims fail # print 'probs', probs max_beta_add = float('-inf') # iterate over all victim nodes to find the optimal threshold for beta in np.arange(0.001, .2, .002): thresh = log(beta/(3012*(1.-beta))) # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) roots = n_roots + len(probs[probs=thresh]).sum() # add probability for the seeds and non-seeds beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) if beta_add > max_beta_add: max_beta = beta max_roots = roots max_beta_add = beta_add # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots ll += max_beta_add roots = max_roots beta = max_beta # print n_nodes, n_roots, n_victims, max_i, roots return (beta, roots, ll)