from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib.pyplot as plt import numpy as np with open("out.log") as fh: values = [map(float, line.strip().split()) for line in fh] #values = [(b, a, l) for (b, a, l) in values if b >= 0.04] am = max(values, key=lambda x: x[4]) # am[0] = 1./am[0] print am alpha, delta, beta, _ , l = zip(*values) alpha = 1./np.array(alpha) fig = plt.figure(figsize=(12, 8)) ax = fig.gca(projection='3d') ax.plot_trisurf(alpha, delta, l, cmap=cm.jet, linewidth=0.001) plt.xlabel("alpha") plt.ylabel("delta") ax.set_zlabel('Likelihood') #plt.savefig("ll.pdf") plt.show()