diff options
Diffstat (limited to 'ps2')
| -rw-r--r-- | ps2/main.tex | 89 |
1 files changed, 89 insertions, 0 deletions
diff --git a/ps2/main.tex b/ps2/main.tex index d628770..f292a5a 100644 --- a/ps2/main.tex +++ b/ps2/main.tex @@ -400,4 +400,93 @@ for binomial coefficients, the computation of the objective function can be made quite efficient: the value of $f_k(e)$ can be computed in $O(1)$ arithmetic operations from $f_{k-1}(e)$. +\section*{Problem 3.4} + +\paragraph{1.} +Let $g$ be drawn from a pairwise independent family of functions $\mathbb{F}\to +\mathbb{F}$, and $f_a:\mathbb{F}^{d+1}\to\mathbb{F}$ as in the problem +statement. Then for $x_1\neq x_2\in \mathbb{F}^{d+1}$ and $y_1, y_2\in +\mathbb{F}$, writing $h=g\circ f_a$: +\begin{align*} + \P[h(x_1) = y_1\wedge h(x_2) = y_2] = &\P[f_a(x_1) + = f_a(x_2)]\P[g(f_a(x_1))=y_1]\mathbf{1}_{\{y_1=y_2\}}\\ + &+ \P[f_a(x_1)\neq f_a(x_2)]\P[g(f_a(x_1)) = y_1\wedge g(f_a(x_2)) += y_2\,|\, f_a(x_1)\neq f_a(x_2)] +\end{align*} +where we decomposed based on whether or not $f_a(x_1) = f_a(x_2)$. + +If $f_a(x_1) = f_a(x_2)$, then $y_1$ have to be equal to $y_2$ and the +probability is only the probability that $g(f_a(x_1)) = y_1$, which is +$\frac{1}{|\mathbb{F}|}$ since $g$ is drawn from a pairwise independent family. +If $f_a(x_2) \neq f_a(x_2)$, then the probability is $\frac{1}{|\mathbb{F}|^2}$ +because $g$ is drawn from a pairwise independent family: +\begin{align*} + \P[h(x_1) = y_1\wedge h(x_2) = y_2] \leq &\P[f_a(x_1) += f_a(x_2)]\frac{1}{|\mathbb{F}|} ++ \frac{1}{|\mathbb{F}|^2} +\end{align*} +where we upper-bounded $\P[f_a(x_1) \neq f_a(x_2)]$ by $1$ and +$\mathbf{1}_{\{y_1=y_2\}}$ by $1$. + +For fixed $x_1$ and $x_2$ with $x_1\neq x_2$, $f_a(x_1)-f_a(x_2)$ is a non-zero +univariate polynomial of the variable $a$ of degree at most $d$. Hence, by the +Schwartz-Zippel lemma: +\begin{displaymath} + \P[f_a(x_1) = f_a(x_2)] \leq \frac{d}{|\mathbb{F}|} +\end{displaymath} +Overall we have: +\begin{displaymath} + \P[h(x_1) = y_1\wedge h(x_2) = y_2] \leq \frac{1+d}{|\mathbb{F}|^2} +\end{displaymath} + +Let us now tune the parameters $d$ and $|\mathbb{F}|$ to satisfy the +requirements. We will choose $|\mathbb{F}| = \gamma M$ for some $\gamma \geq 1$ +(we can simply drop the extra bits to get $\log M = m$ random bits). So we will +have: +\begin{displaymath} + \P[h(x_1) = y_1\wedge h(x_2) = y_2] \leq \frac{1+\eps}{M^2} +\end{displaymath} +as soon as $\frac{1+d}{\gamma^2}\leq 1+\eps$. Choosing $\gamma = \sqrt{d}$, +this will be satisfied when $d\geq \frac{1}{\eps}$. Then we have +$|\mathbb{F}|^d = (\sqrt{d}M)^d$ which will be larger than $N$ as soon as +$d\geq n$. + +To summarize, we choose $|\mathbb{F}| = \sqrt{d} M$ and $d = \frac{1}{\eps} ++ n$. The number of required random bits for $g$ and $a$ is $O(\log |F|) += O(m+\log n + \log \frac{1}{\eps})$. + +\paragraph{2.} We draw $g:[N]\to\{0,1\}$ from an almost pairwise independent +family. + +Consider the classic randomized algorithm for MaxCut using +$g$: the cut is $(S,\bar{S})$ where $S = \{v\in V\,|\, g(v) = 1\}$. We have: +\begin{align*} + \E[|cut(S)|] &= \sum_{(u,v)\in E} \P[(u,v)\in cut(S)]= + \sum_{(u,v)\in E} 1- \P[(u,v)\notin cut(S)]\\ + &= \sum_{(u,v)\in E} 1- \P[g(u) = g(v) = 1] - \P[g(u) = g(v) - 0] + \geq |E|\left(1 - \frac{1+\eps}{4} - \frac{1+\eps}{4}\right) + = |E|\left(\frac{1}{2}-\frac{\eps}{2}\right) +\end{align*} +where the inequality used the almost pairwise independence of $g$. + +Choosing $\eps = \frac{1}{\log N}$, we have that $\E[|cut(S)|]\geq +|E|(1/2-o(1))$. Hence there exists a sequence of coin tosses (for $g$) such +that for this sequence $|cut(S)|\geq 1/2-o(1)$. + +One such sequence can be found by iterating over all possible sequences and +taking the one for which $|cut(S)|$ is maximum. It follows from \textbf{1.} +that $g$ requires $O(2 + \log\log N +\log\frac{1}{\eps}) = O(\log\log N)$ +random bits. Hence we need $O(\log N)$ iterations to iterate over all possible +sequences of random bits. For each iteration, we need $O(M\poly\log N)$ time to +compute the size of the cut (computing $g(x)$ for a given vertex $x$ can be +done in $\poly\log N$). Hence the overall running time is $O(M\poly\log N)$ + +The space requirement is: +\begin{itemize} + \item $O(\log\log N)$ to store the current sequence of random bits as well + as the sequence of random bits for the candidate maximum cut +\item $O(\log M)$ to compute the size of a cut at a given iteration as well as + storing the candidate maximum cut size. +\end{itemize} +Overall, the space requirement is $O(\log M)$ \end{document} |
