From 31723d80eb029973eef9162b9ad9e1c7bb7c930a Mon Sep 17 00:00:00 2001 From: Thibaut Horel Date: Sat, 4 Apr 2015 12:45:32 -0400 Subject: [ps4] first problem --- ps4/main.tex | 72 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100644 ps4/main.tex diff --git a/ps4/main.tex b/ps4/main.tex new file mode 100644 index 0000000..7799f32 --- /dev/null +++ b/ps4/main.tex @@ -0,0 +1,72 @@ +\documentclass[10pt]{article} +\usepackage{fullpage} +\usepackage[utf8x]{inputenc} +\usepackage{amsmath,amsfonts,amsthm} +\usepackage[english]{babel} +\usepackage[capitalize, noabbrev]{cleveref} +\usepackage{algorithm} +\usepackage{algpseudocode} + +\newenvironment{enumerate*}% + {\vspace{-2ex} \begin{enumerate} % + \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% + {\end{enumerate}} + +\newenvironment{itemize*}% + {\vspace{-2ex} \begin{itemize} % + \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% + {\end{itemize}} + +\newenvironment{description*}% + {\vspace{-2ex} \begin{description} % + \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% + {\end{description}} + + +\DeclareMathOperator{\E}{\mathbb{E}} +\let\P\relax +\DeclareMathOperator{\P}{\mathbb{P}} +\DeclareMathOperator*{\argmin}{\arg\min} +\newcommand{\ex}[1]{\E\left[#1\right]} +\newcommand{\prob}[1]{\P\left[#1\right]} +\newcommand{\inprod}[1]{\left\langle #1 \right\rangle} +\newcommand{\R}{\mathbf{R}} +\newcommand{\poly}{\text{poly}} +\newcommand{\N}{\mathbf{N}} +\newcommand{\C}{\mathcal{C}} +\newcommand{\eps}{\varepsilon} +\newcommand{\cl}[1]{\text{\textbf{#1}}} +\newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}} +\newcommand{\llbracket}{[\![} + + +\newtheorem{theorem}{Theorem} +\newtheorem{lemma}{Lemma} +\algrenewcommand\algorithmicensure{\textbf{Output:}} +\algrenewcommand\algorithmicrequire{\textbf{Input:}} + +\author{Thibaut Horel} +\title{CS 225 Problem Set 4 -- Solutions} + +\begin{document} +\maketitle + +\section*{Problem 5.1} I use a simple counting argument. If $\mathcal{C}$ is +$(\delta, L)$ list-decodable, then for all $r\in \Sigma^{\hat{n}}$ we have +$|B(r,\delta)\cap \mathcal{C}|\leq L$. Hence: +\begin{displaymath} + \sum_{r\in \Sigma^{\hat{n}}} |B(r,\delta)\cap\mathcal{C}|\leq Lq^{\hat{n}} +\end{displaymath} +Furthermore, each code-word $c$ of $\mathcal{C}$ is counted several times in +the sum: once for each $r\in B(c,\delta)$. But $B(c,\delta)$ is of size +$q^{\hat{n}H_q(\delta, \hat{n})}$. So each $c\in\mathcal{C}$ appears at most +$q^{\hat{n}H_q(\delta, \hat{n})}$ times in the sum: +\begin{displaymath} + |\mathcal{C}|q^{\hat{n}H_q(\delta, \hat{n})}\leq + \sum_{r\in \Sigma^{\hat{n}}} |B(r,\delta)\cap\mathcal{C}| +\end{displaymath} +Putting the previous two equations together: +$ |\mathcal{C}|q^{\hat{n}H_q(\delta, \hat{n})} \leq Lq^{\hat{n}}$. Taking the +$\log$ both sides and reordering the terms (and using $\rho = \frac{\log +|\mathcal{C}|}{\hat{n}\log q}$) concludes the proof. +\end{document} -- cgit v1.2.3-70-g09d2