From 8306269baf96c194b708d6eb28db91b1d4ee0daf Mon Sep 17 00:00:00 2001 From: Thibaut Horel Date: Sat, 28 Feb 2015 15:22:47 -0500 Subject: [ps2] second and third problems --- ps2/main.tex | 184 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 181 insertions(+), 3 deletions(-) diff --git a/ps2/main.tex b/ps2/main.tex index ecfba0b..d628770 100644 --- a/ps2/main.tex +++ b/ps2/main.tex @@ -25,10 +25,12 @@ \DeclareMathOperator{\E}{\mathbb{E}} \let\P\relax \DeclareMathOperator{\P}{\mathbb{P}} +\DeclareMathOperator*{\argmin}{\arg\min} \newcommand{\ex}[1]{\E\left[#1\right]} \newcommand{\prob}[1]{\P\left[#1\right]} \newcommand{\inprod}[1]{\left\langle #1 \right\rangle} \newcommand{\R}{\mathbf{R}} +\newcommand{\poly}{\text{poly}} \newcommand{\N}{\mathbf{N}} \newcommand{\C}{\mathcal{C}} \newcommand{\eps}{\varepsilon} @@ -213,13 +215,189 @@ value at most: where we used $\sqrt{1-x}\leq 1-\frac{x}{2}$ which concludes the question by definition of $\lambda(G)$. -\paragraph{6.} The analysis we did in \textbf{4.} used that the length of -a path from $i^*$ to $k$ had length $l\leq n$. If we know the diameter $D$, we -have $l\leq D$. The same analysis gives $\lambda_2\leq 1- \frac{1}{dDn}$. +\paragraph{6.} The analysis we did in \textbf{4.} used that a path from +$i^*$ to $k$ had length $l\leq n$. If we know the diameter $D$, we have $l\leq +D$. The same analysis gives $\lambda_2\leq 1- \frac{1}{dDn}$. Finally, \textbf{5.} implies that $\gamma(G) \geq \frac{1}{2d^2n^2}$. \section*{Problem 3.1} +Let us consider a problem $(Y, N)$ in $\cl{prBPP}$ where $Y$ (resp. $N$) is +the set of “yes” (resp. “no”) instances. There is a polynomial time algorithm +$A$ such that for all $x$, $\prob{ A(x) \text{ correct}}\geq 1-\frac{1}{2^n}$. +The algorithm uses $m = poly(n)$ coin tosses. For input $x$, let us denote by +$A_x$ the set of coin tosses $r$ such that $A(x; r)$ says “yes”. +Using exactly the same analysis as in the proof of Theorem 3.14, we can prove: +\begin{itemize} + \item $x\in Y \implies \P_s\big[\forall r\in \{0,1\}^m,\; P(x,s,r) = 1\big] + > 1 - \frac{2^m}{2^{nm}}$ where $s$ is a $m$-tuple of random bits. + \item $x\in N \implies \forall s\in\{0,1\}^m,\; \P_r\big[P(x,s,r) + = 1\big]<\frac{m}{2^{n}}$ were $r$ is a $m$-tuple of random bits. +\end{itemize} +for $P(x,s,r) = \bigvee_{i=1}^m \big(A(x;r\oplus s_i) = 1\big)$. Clearly $P$ +can be computed in polynomial time. +If we define: +\begin{itemize} + \item $Y' = \big\{(x,s):\, \forall r\in\{0,1\}^m,\; P(x,s,r) = 1\big\}$ + \item $N' = \big\{(x,s):\, \P_r[ P(x,s,r) = 1]<\frac{m}{2^n}\big\}$ +\end{itemize} +then $(Y', N')$ is clearly in $\cl{prco-RP}$ (for input $(x,s)$ take $r$ at +random and output $P(x,s,r)$). Since we are assuming $\cl{prRP} = \cl{prP}$, +then $\cl{prco-RP} = \cl{prco-P} = \cl{prP}$. Hence there exists $Q$, +a polynomial time predicate such that: +\begin{itemize} + \item $x\in Y \implies \P_s\big[Q(x,s) = 1\big] + > 1- \frac{2^m}{2^{nm}}$ where $s$ is a $m$-tuple of random bits. + \item $x\in N \implies \forall s\in\{0,1\}^m,\; Q(x,s) = 0$. +\end{itemize} +But now we see that: +\begin{itemize} + \item $Y'' = \{x:\, \P_s[Q(x,s) = 1]>1-\frac{2^m}{2^{nm}}\}$ + \item $N'' = \{x:\, \forall s,\; Q(x,s) = 0\}$ +\end{itemize} +is in $\cl{prRP} = \cl{prP}$. Hence there is a polynomial time predicate $R$ +such that: +\begin{itemize} + \item $x\in Y\implies R(x) = 1$ + \item $x\in N\implies R(x) = 0$ +\end{itemize} +which proves that $(Y,N)$ is in $\cl{prP}$. This implies that $\cl{prBPP} += \cl{prP}$ and thus that $\cl{BPP} = \cl{P}$. + \section*{Problem 3.2} + +\paragraph{1.} Let us assume that $S_1,\ldots,S_{i-1}$ have already been +constructed and satisfy the $(l,a)$ design requirements. Then, for $S_i$ chosen +uniformly at random in $[d]$, we have: +\begin{displaymath} + \E_{S_i}\big[\#\{j 0$, we need: +\begin{displaymath} + m\leq {d\choose a}/{l \choose a}^2 +\end{displaymath} +we use the standard inequalities: +\begin{displaymath} + \left(\frac{n}{k}\right)^k\leq + {n\choose k} \leq \left(\frac{ne}{k}\right)^k +\end{displaymath} +to prove that the condition will be satisfied if: +\begin{displaymath} + \left(\frac{de}{a}\right)^a\geq m\left(\frac{l}{a}\right)^{2a} +\end{displaymath} +This is equivalent to: +\begin{displaymath} + d\geq \frac{1}{e}m^{1/a} \frac{l^2}{a} + = \frac{2^{1/\gamma}}{e}\frac{l^2}{a} = O\left(\frac{l^2}{a}\right) +\end{displaymath} +where the first equality used that $a =\gamma \log m$. + +\paragraph{3.} We are going to construct the sets $S_1,\dots, S_{m}$ one by +one, and for each $i$, we are going to construct $S_i$ element by element using +the Method of Conditional Expectation. If all the parameters are as in +\textbf{2.}, we know from \textbf{1.} that if $S_1,\dots,S_{i-1}$ have already +been constructed, then: +\begin{displaymath} + \E_{S_i}\left[\#\{j