\documentclass[10pt]{article} \usepackage{fullpage} \usepackage[utf8x]{inputenc} \usepackage{amsmath,amsfonts,amsthm} \usepackage[english]{babel} \usepackage[capitalize, noabbrev]{cleveref} \usepackage{algorithm} \usepackage{algpseudocode} \newenvironment{enumerate*}% {\vspace{-2ex} \begin{enumerate} % \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{enumerate}} \newenvironment{itemize*}% {\vspace{-2ex} \begin{itemize} % \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{itemize}} \newenvironment{description*}% {\vspace{-2ex} \begin{description} % \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{description}} \DeclareMathOperator{\E}{\mathbb{E}} \let\P\relax \DeclareMathOperator{\P}{\mathbb{P}} \newcommand{\ex}[1]{\E\left[#1\right]} \newcommand{\prob}[1]{\P\left[#1\right]} \newcommand{\inprod}[1]{\left\langle #1 \right\rangle} \newcommand{\R}{\mathbf{R}} \newcommand{\N}{\mathbf{N}} \newcommand{\C}{\mathcal{C}} \newcommand{\eps}{\varepsilon} \newcommand{\cl}[1]{\text{\textbf{#1}}} \newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}} \newcommand{\llbracket}{[\![} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \algrenewcommand\algorithmicensure{\textbf{Output:}} \algrenewcommand\algorithmicrequire{\textbf{Input:}} \author{Thibaut Horel} \title{CS 225 Problem Set 2 -- Solutions} \begin{document} \maketitle Collaborator: Debmalya Mandal \section*{Problem 2.9} \paragraph{1.} Let $\lambda$ be an eigenvalue of $M$ and $x$ be an associated eigenvector. Let $i^*\in\{1,\ldots, n\}$ such that $|x_{i^*}| = \|x\|_{\infty}$. Since $x$ is an eigenvector we have: \begin{displaymath} \sum_{j=1}^n m_{i^*,j} x_j = \lambda x_{i^*} \end{displaymath} $x$ is non-zero, hence $x_{i^*}$ is non-zero. Dividing both sides by $x_{i^*}$, we obtain: \begin{displaymath} |\lambda| = \left|\sum_{j=1}^n m_{i^*,j} \frac{x_j}{x_{i^*}}\right| \leq \sum_{j=1}^n m_{i^*,j} \left|\frac{x_j}{x_{i^*}}\right| \leq \sum_{j=1}^n m_{i^*, j} = 1 \end{displaymath} where the first inequality used the triangle inequality and the second inequality used the definition of $x_{i^*}$. \paragraph{2.} Assume $G$ is disconnected. Hence it has at least two connected components. We can write $V = C_1\cup C_2$ with $C_1\cap C_2 = \emptyset$ and $ C_1\times C_2\cap E = \emptyset$. Then it is clear that $x^1 = \mathbf{1}_{C_1}$ (the indicator vector of $C_1$) and $x^2 = \mathbf{1}_{C_2}$ are eigenvectors of $M$ for the eigenvalue 1. For example for $x^1$: \begin{displaymath} \sum_{j=1}^n m_{i,j} x^1_j = \begin{cases} 1&\text{if $i\in C_1$}\\ 0&\text{otherwise} \end{cases} \end{displaymath} where the first case follows from the fact that if $i\in C_1$, all the non-zero terms $m_{i,j}$ will be preserved by the multiplication by $x^1_j$ since $m_{i,j}\neq 0\Leftrightarrow j\in C_1$ and the fact that $\sum_{j=1}^n m_{i,j} = 1$. Similarly if $i\in C_2$ $m_{i,j} = 0$ whenever $j\in C_1$. Furthermore $x^1$ and $x^2$ are clearly orthogonal, so they span a vector space of dimension 2. Hence the multiplicity of $1$ as an eigenvalue is at least 2. \paragraph{} Let us now assume that $G$ is connected and let us consider an eigenvector $x$ for the eigenvalue 1. We have $M^k x = x$ for all $k$. Furthermore since $G$ is connected, we have that $M^n > 0$ (all the entries are positive). Indeed, there always exists at least one path of length $n$ between any two vertices. Writing $a_{i,j}$ the entries of $M^n$ and choosing $i^*\in \{1,\ldots n\}$ such that $|x_{i^*}| = \|x\|_{\infty}$ we have: \begin{displaymath} \sum_{j=1}^n a_{i^*,j}x_j = x_{i^*} \end{displaymath} Dividing by $x_{i^*}$ both sides (it is non-zero for the same reason as in \textbf{1.}): \begin{displaymath} 1 = \left|\sum_{j=1}^n a_{i^*,j}\frac{x_j}{x_{i^*}}\right| \leq \sum_{j=1}^n a_{i^*,j}\left|\frac{x_j}{x_{i^*}}\right| \leq \sum_{j=1}^n a_{i^*,j} = 1 \end{displaymath} where we again used the triangle inequality, the definition of $x_{i^*}$ and the fact that the sum of the entries of the rows of $M^n$ is one (indeed we have $M\textbf{1} = \textbf{1}$ where $\textbf{1}$ is the all-one vector, so $M^n\textbf{1} = \textbf{1}$). Hence, the chain of inequalities is a chain of equalities. Since $a_{i^*,j}\neq 0$ for all $j$, this implies that for all $j$: $|\frac{x_j}{x_{i*}}|=1$ and all the $\frac{x_j}{x_{i^*}}$ have the same sign. That is, for all $j$ $x_j = x_{i^*}$. Hence $x = \alpha \textbf{1}$ for some $\alpha$. We have just proved that $G$ connected implies that the multiplicity of $1$ is $1$ (the eigenspace is spanned by $\textbf{1}$). The contrapositive gives the second part of the equivalence that we were asked to prove. \paragraph{3.} Assuming that $G$ is connected, it is easy to see that $G$ bipartite is equivalent to $G^2$ being disconnected. Hence assuming $G$ connected and using \textbf{2.}: $G$ bipartite $\Leftrightarrow$ $G^2$ disconnected $\Leftrightarrow$ $1$ is an eigenvalue of $M^2$ of multiplicity at least 2 $\Leftrightarrow$ $\exists x\perp \mathbf{1},\; M^2x = x$ $\Leftrightarrow$ $\exists x\perp\mathbf{1},\; Mx = \pm x$ $\Leftrightarrow$ $\exists x\perp\mathbf{1},\; Mx = -x$ $\Leftrightarrow$ $-1$ is an eigenvalue of $M$. The antepenultimate equivalence uses that the eigenvalues of $M^2$ are the squares of the eigenvalues of $M$, and the penultimate equivalence uses that $x$ cannot be an eigenvector for the eigenvalue $1$ because of \textbf{2}. The second equivalence also uses \textbf{2.}. \paragraph{4.} First observe that $\max_{\|x\|_2 = 1} \inprod{Mx, x}$ = $\lambda_{max}(M)$ for any symmetric matrix $M$. Indeed, using the spectral theorem and writing $M = P^T DP$ with $D$ = $\text{diag}(\lambda_1,\dots,\lambda_n)$ and observing that $\|x\|_2 =1\Leftrightarrow \|Px\|_2 = 1$ we have: \begin{displaymath} \max_{\|x\|_2 = 1} \inprod{Mx, x} = \max_{\|y\|_2=1} y^TDy = \max_{\|y\|_2 = 1} \sum_{i=1}^n\lambda_i y_i^2 \end{displaymath} the right-hand side maximum is clearly obtained when $y_i = 1$ for some coordinated $i$ such that $\lambda_i = \lambda_{max}(M)$ and $y_j = 0$ for $j\neq i$. For this $y$ the value is $\lambda_{max}(M)$. Now observe that $\max_x\inprod{Mx, x}$ when $x$ is taken in the vector space orthogonal to $\mathbf{1}$ is exactly the largest eigenvalue of $M$ when restricted to the vector space orthogonal to $\mathbf{1}$ (restricting $M$ to this subspace is allowed since this subspace is invariant by $M$). But since the eigenspaces of $M$ are orthogonal, the largest eigenvalue of $M$ restricted to the orthogonal of $\mathbf{1}$ is the second largest eigenvalue of $M$. Hence: \begin{displaymath} \lambda_2(M) = \max_{x} \inprod{Mx, x} \end{displaymath} where the maximum is taken over $x$ of length 1 in the orthogonal space of $\mathbf{1}$. \paragrpha{} Let us now show the second identity given in the problem statement. \end{document}