\documentclass[10pt]{article} \usepackage{fullpage} \usepackage[utf8x]{inputenc} \usepackage{amsmath,amsfonts,amsthm} \usepackage[english]{babel} \usepackage[capitalize, noabbrev]{cleveref} \usepackage{algorithm} \usepackage{algpseudocode} \newenvironment{enumerate*}% {\vspace{-2ex} \begin{enumerate} % \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{enumerate}} \newenvironment{itemize*}% {\vspace{-2ex} \begin{itemize} % \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{itemize}} \newenvironment{description*}% {\vspace{-2ex} \begin{description} % \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{description}} \DeclareMathOperator{\E}{\mathbb{E}} \let\P\relax \DeclareMathOperator{\P}{\mathbb{P}} \DeclareMathOperator*{\argmin}{\arg\min} \newcommand{\ex}[1]{\E\left[#1\right]} \newcommand{\prob}[1]{\P\left[#1\right]} \newcommand{\inprod}[1]{\left\langle #1 \right\rangle} \newcommand{\R}{\mathbf{R}} \newcommand{\poly}{\text{poly}} \newcommand{\N}{\mathbf{N}} \newcommand{\C}{\mathcal{C}} \newcommand{\eps}{\varepsilon} \newcommand{\cl}[1]{\text{\textbf{#1}}} \newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}} \newcommand{\llbracket}{[\![} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \algrenewcommand\algorithmicensure{\textbf{Output:}} \algrenewcommand\algorithmicrequire{\textbf{Input:}} \author{Thibaut Horel} \title{CS 225 Problem Set 2 -- Solutions} \begin{document} \maketitle Collaborator: Debmalya Mandal \section*{Problem 2.9} \paragraph{1.} Let $\lambda$ be an eigenvalue of $M$ and $x$ be an associated eigenvector. Let $i^*\in\{1,\ldots, n\}$ such that $|x_{i^*}| = \|x\|_{\infty}$. Since $x$ is an eigenvector we have: \begin{displaymath} \sum_{j=1}^n m_{i^*,j} x_j = \lambda x_{i^*} \end{displaymath} $x$ is non-zero, hence $x_{i^*}$ is non-zero. Dividing both sides by $x_{i^*}$, we obtain: \begin{displaymath} |\lambda| = \left|\sum_{j=1}^n m_{i^*,j} \frac{x_j}{x_{i^*}}\right| \leq \sum_{j=1}^n m_{i^*,j} \left|\frac{x_j}{x_{i^*}}\right| \leq \sum_{j=1}^n m_{i^*, j} = 1 \end{displaymath} where the first inequality used the triangle inequality and the second inequality used the definition of $x_{i^*}$. \paragraph{2.} Assume $G$ is disconnected. Hence it has at least two connected components. We can write $V = C_1\cup C_2$ with $C_1\cap C_2 = \emptyset$ and $ C_1\times C_2\cap E = \emptyset$. Then it is clear that $x^1 = \mathbf{1}_{C_1}$ (the indicator vector of $C_1$) and $x^2 = \mathbf{1}_{C_2}$ are eigenvectors of $M$ for the eigenvalue 1. For example for $x^1$: \begin{displaymath} \sum_{j=1}^n m_{i,j} x^1_j = \begin{cases} 1&\text{if $i\in C_1$}\\ 0&\text{otherwise} \end{cases} \end{displaymath} where the first case follows from the fact that if $i\in C_1$, all the non-zero terms $m_{i,j}$ will be preserved by the multiplication by $x^1_j$ since $m_{i,j}\neq 0\Leftrightarrow j\in C_1$ and the fact that $\sum_{j=1}^n m_{i,j} = 1$. Similarly if $i\in C_2$ $m_{i,j} = 0$ whenever $j\in C_1$. Furthermore $x^1$ and $x^2$ are clearly orthogonal, so they span a vector space of dimension 2. Hence the multiplicity of $1$ as an eigenvalue is at least 2. \paragraph{} Let us now assume that $1$ has multiplicity at least $2$. We can find an eigenvector $x$ for $1$ orthogonal to $\lambda_1$, that is: $\sum_i x_i = 0$. Let us define $C_1 = \{i\in V: x_i > 0\}$ and $C_2 = \{i\in V: x_j\leq 0\}$. Because $x\neq 0$ and $\sum_i x_i = 0$, both $C_1$ and $C_2$ are non-empty. They are clearly disjoint and their union is $V$. We show that $C_1$ and $C_2$ are disconnected. Let $i^*$ such that $|x_{i^*}| = \|x\|_{\infty}$. Without loss of generality we can assume $x_{i^*} > 0$ (otherwise we consider $x' = -x$). \begin{displaymath} \sum_{j=1}^n m_{i^*,j}x_j = x_{i^*} \end{displaymath} Dividing by $x_{i^*}$ both sides (it is non-zero for the same reason as in \textbf{1.}): \begin{displaymath} 1 = \left|\sum_{j=1}^n m_{i^*,j}\frac{x_j}{x_{i^*}}\right| \leq \sum_{j=1}^n m_{i^*,j}\left|\frac{x_j}{x_{i^*}}\right| \leq \sum_{j=1}^n m_{i^*,j} = 1 \end{displaymath} where we again used the triangle inequality, the definition of $x_{i^*}$ and the fact that the sum of the entries of the rows of $M$ is one. Hence, the chain of inequalities is a chain of equalities. This implies that for all $j$ such that $m_{i^*,j} \neq 0$, $x_j=x_{i^*}$. But we can then repeatedly apply the same argument to all the neighbors of $i^*$, the neighbors of their neighbors, etc. By induction (over the distance to $i^*$), we see that for all vertices $j$ in the same connected component as $i^*$, $x_j = x_{i^*}>0$. This implies that $C_2$ is disconnected from $C_1$ (none of the vertices in $C_2$ are in the same connected component as $x_{i^*}$). \paragraph{3.} Assuming that $G$ is connected, it is easy to see that $G$ bipartite is equivalent to $G^2$ being disconnected. Hence assuming $G$ connected and using \textbf{2.}: $G$ bipartite $\Leftrightarrow$ $G^2$ disconnected $\Leftrightarrow$ $1$ is an eigenvalue of $M^2$ of multiplicity at least 2 $\Leftrightarrow$ $\exists x\perp \mathbf{1}, x\neq 0,\; M^2x = x$ $\Leftrightarrow$ $\exists x\perp\mathbf{1}, x\neq 0,\; Mx = \pm x$ $\Leftrightarrow$ $\exists x\perp\mathbf{1}, x\neq 0,\; Mx = -x$ $\Leftrightarrow$ $-1$ is an eigenvalue of $M$. The antepenultimate equivalence uses that the eigenvalues of $M^2$ are the squares of the eigenvalues of $M$, and the penultimate equivalence uses that $x$ cannot be an eigenvector for the eigenvalue $1$ because of \textbf{2}. The second equivalence also uses \textbf{2.}. \paragraph{4.} First observe that $\max_{\|x\|_2 = 1} \inprod{Mx, x}$ = $\lambda_{max}(M)$ for any symmetric matrix $M$. Indeed, using the spectral theorem and writing $M = P^T DP$ with $D$ = $\text{diag}(\lambda_1,\dots,\lambda_n)$ and observing that $\|x\|_2 =1\Leftrightarrow \|Px\|_2 = 1$ we have: \begin{displaymath} \max_{\|x\|_2 = 1} \inprod{Mx, x} = \max_{\|y\|_2=1} y^TDy = \max_{\|y\|_2 = 1} \sum_{i=1}^n\lambda_i y_i^2 \end{displaymath} the right-hand side maximum is clearly obtained when $y_i = 1$ for some coordinate $i$ such that $\lambda_i = \lambda_{max}(M)$ and $y_j = 0$ for $j\neq i$. For this $y$ the value is $\lambda_{max}(M)$. Now observe that $\max_x\inprod{Mx, x}$ when $x$ is taken in the vector space orthogonal to $\mathbf{1}$ is exactly the largest eigenvalue of $M$ when restricted to the vector space orthogonal to $\mathbf{1}$ (restricting $M$ to this subspace is allowed since this subspace is invariant by $M$). But since the eigenspaces of $M$ are orthogonal, the largest eigenvalue of $M$ restricted to the orthogonal of $\mathbf{1}$ is the second largest eigenvalue of $M$. Hence: \begin{displaymath} \lambda_2(M) = \max_{x} \inprod{Mx, x} \end{displaymath} where the maximum is taken over $x$ of length 1 in the orthogonal space of $\mathbf{1}$. \paragraph{} Let us now show the second identity given in the problem statement: \begin{displaymath} \sum_{(i,j)\in E} (x_i-x_j)^2 = \sum_{(i,j)\in E} x_i^2 + \sum_{(i,j)\in E} x_j^2 - 2\sum_{(i,j)\in E} x_ix_j = \frac{d}{2}\|x\|_2^2 + \frac{d}{2}\|x\|_2^2 - d\sum_{i,j} m_{i,j}x_i x_j \end{displaymath} where the second equality used that for all $i$ (resp. $j$) there are $\frac{d}{2}$ edges leaving (entering) and that $m_{i,j} = \frac{2}{d}a_{i,j}$ where $a_{i,j}$ is the $(i,j)$ entry of the adjacency matrix of $G$. For $\|x\|_2 = 1$: \begin{displaymath} 1- \frac{1}{d}\sum_{(i,j)\in E} (x_i-x_j)^2 = \sum_{i,j}m_{i,j}x_i x_j = \inprod{Mx, x} \end{displaymath} taking the $\max$ both sides gives the second identity. Let us now consider $x$ such that $\|x\|_2 = 1$ and $\sum_{i} x_i = 0$ and consider $i^*$ such that $|x_{i^*}| = \|x\|_{\infty}$. Because $\|x\|_2 =1$, we have $|x_{i^*}| \geq \frac{1}{\sqrt{n}}$. Because, $\sum_i x_i = 0$ there is $x_k$ such that $x_k$ has the opposite sign of $x_{i^*}$. Since $G$ is connected, there is a path of length $l$ at most $n$ from $i^*$ to $k$. Let us index this path $i^* = i_1,\ldots, i_l = k$. Then: \begin{displaymath} \sum_{(i,j)\in E} (x_i-x_j)^2 \geq \sum_{s=1}^l (x_{i_{s+1}} - x_{i_s})^2 \end{displaymath} where we restricted the sum to the path from $i^*$ to $k$. Applying the Cauchy-Schwartz inequality: \begin{displaymath} \sum_{(i,j)\in E} (x_i-x_j)^2 \geq \frac{1}{l} \left(\sum_{s=1}^l x_{i_{s+1}} - x_{i_s}\right)^2= \frac{1}{l} (x_k - x_{i^*})^2\geq \frac{1}{l} x_{i^*}^2 \end{displaymath} where the last inequality used that $x_{i^*}$ and $x_k$ have opposite signs. Finally using $x_{i^*}^2 \geq \frac{1}{n}$ and $l\leq n$: \begin{displaymath} \sum_{(i,j)\in E} (x_i-x_j)^2 \geq \frac{1}{n^2} \end{displaymath} Taking the $\min$ over $x$, this implies, using the variational expression for $\lambda_2$ (second largest eigenvalue) established at the beginning of the question: $\lambda_2\leq 1-\frac{1}{dn^2}$. \paragraph{5.} We consider the graph $G^2$. As seen in \textbf{3.}, $G^2$ is connected since $G$ is connected and nonbipartite. Hence, we can apply question \textbf{4.} to $G^2$: $\lambda_2 (M^2)\leq 1-\frac{1}{d^2n^2}$ (the degree of $G^2$ is $d^2$). But the eigenvalues of $M^2$ are the squares of the eigenvalues of $M$. So all the eigenvalues of $M$ other than 1 have absolute value at most: \begin{displaymath} \sqrt{1-\frac{1}{d^2n^2}}\leq 1 - \frac{1}{2d^2n^2} \end{displaymath} where we used $\sqrt{1-x}\leq 1-\frac{x}{2}$ which concludes the question by definition of $\lambda(G)$. \paragraph{6.} The analysis we did in \textbf{4.} used that a path from $i^*$ to $k$ had length $l\leq n$. If we know the diameter $D$, we have $l\leq D$. The same analysis gives $\lambda_2\leq 1- \frac{1}{dDn}$. Finally, \textbf{5.} implies that $\gamma(G) \geq \frac{1}{2d^2n^2}$. \section*{Problem 3.1} Let us consider a problem $(Y, N)$ in $\cl{prBPP}$ where $Y$ (resp. $N$) is the set of “yes” (resp. “no”) instances. There is a polynomial time algorithm $A$ such that for all $x$, $\prob{ A(x) \text{ correct}}\geq 1-\frac{1}{2^n}$. The algorithm uses $m = poly(n)$ coin tosses. For input $x$, let us denote by $A_x$ the set of coin tosses $r$ such that $A(x; r)$ says “yes”. Using exactly the same analysis as in the proof of Theorem 3.14, we can prove: \begin{itemize} \item $x\in Y \implies \P_s\big[\forall r\in \{0,1\}^m,\; P(x,s,r) = 1\big] > 1 - \frac{2^m}{2^{nm}}$ where $s$ is a $m$-tuple of random bits. \item $x\in N \implies \forall s\in\{0,1\}^m,\; \P_r\big[P(x,s,r) = 1\big]<\frac{m}{2^{n}}$ were $r$ is a $m$-tuple of random bits. \end{itemize} for $P(x,s,r) = \bigvee_{i=1}^m \big(A(x;r\oplus s_i) = 1\big)$. Clearly $P$ can be computed in polynomial time. If we define: \begin{itemize} \item $Y' = \big\{(x,s):\, \forall r\in\{0,1\}^m,\; P(x,s,r) = 1\big\}$ \item $N' = \big\{(x,s):\, \P_r[ P(x,s,r) = 1]<\frac{m}{2^n}\big\}$ \end{itemize} then $(Y', N')$ is clearly in $\cl{prco-RP}$ (for input $(x,s)$ take $r$ at random and output $P(x,s,r)$). Since we are assuming $\cl{prRP} = \cl{prP}$, then $\cl{prco-RP} = \cl{prco-P} = \cl{prP}$. Hence there exists $Q$, a polynomial time predicate such that: \begin{itemize} \item $x\in Y \implies \P_s\big[Q(x,s) = 1\big] > 1- \frac{2^m}{2^{nm}}$ where $s$ is a $m$-tuple of random bits. \item $x\in N \implies \forall s\in\{0,1\}^m,\; Q(x,s) = 0$. \end{itemize} But now we see that: \begin{itemize} \item $Y'' = \{x:\, \P_s[Q(x,s) = 1]>1-\frac{2^m}{2^{nm}}\}$ \item $N'' = \{x:\, \forall s,\; Q(x,s) = 0\}$ \end{itemize} is in $\cl{prRP} = \cl{prP}$. Hence there is a polynomial time predicate $R$ such that: \begin{itemize} \item $x\in Y\implies R(x) = 1$ \item $x\in N\implies R(x) = 0$ \end{itemize} which proves that $(Y,N)$ is in $\cl{prP}$. This implies that $\cl{prBPP} = \cl{prP}$ and thus that $\cl{BPP} = \cl{P}$. \section*{Problem 3.2} \paragraph{1.} Let us assume that $S_1,\ldots,S_{i-1}$ have already been constructed and satisfy the $(l,a)$ design requirements. Then, for $S_i$ chosen uniformly at random in $[d]$, we have: \begin{displaymath} \E_{S_i}\big[\#\{j 0$, we need: \begin{displaymath} m\leq {d\choose a}/{l \choose a}^2 \end{displaymath} we use the standard inequalities: \begin{displaymath} \left(\frac{n}{k}\right)^k\leq {n\choose k} \leq \left(\frac{ne}{k}\right)^k \end{displaymath} to prove that the condition will be satisfied if: \begin{displaymath} \left(\frac{de}{a}\right)^a\geq m\left(\frac{l}{a}\right)^{2a} \end{displaymath} This is equivalent to: \begin{displaymath} d\geq \frac{1}{e}m^{1/a} \frac{l^2}{a} = \frac{2^{1/\gamma}}{e}\frac{l^2}{a} = O\left(\frac{l^2}{a}\right) \end{displaymath} where the first equality used that $a =\gamma \log m$. \paragraph{3.} We are going to construct the sets $S_1,\dots, S_{m}$ one by one, and for each $i$, we are going to construct $S_i$ element by element using the Method of Conditional Expectation. If all the parameters are as in \textbf{2.}, we know from \textbf{1.} that if $S_1,\dots,S_{i-1}$ have already been constructed, then: \begin{displaymath} \E_{S_i}\left[\#\{j