summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--hw1/main.tex24
1 files changed, 12 insertions, 12 deletions
diff --git a/hw1/main.tex b/hw1/main.tex
index cd5c1f9..e05594e 100644
--- a/hw1/main.tex
+++ b/hw1/main.tex
@@ -60,7 +60,7 @@ $X+Y$ respectively, we have:
g(z) = \int_{\mathbb{R}} f_X(u)f_Y(z-u)du,\quad z\in\mathbb{R}
\end{displaymath}
-(b) Using the formula for the cdf of a gaussain, we obtain:
+(b) Using the formula for the cdf of a Gaussian variable, we obtain:
\begin{displaymath}
g(z) = \frac{1}{2\pi\sigma_X\sigma_Y}\int_{\mathbb{R}}
\exp\left(-\frac{u^2}{2\sigma_X^2} - \frac{(z-u)^2}{2\sigma_y^2}\right)du
@@ -78,8 +78,8 @@ Hence:
g(z) = \frac{1}{2\pi\sigma_X\sigma_Y}
\exp\left(- \frac{z^2}{2(\sigma_X^2+\sigma_Y^2)}\right)
\int_{\mathbb{R}}
- -\frac{\sigma_X^2+ \sigma_Y^2}{2\sigma_X^2\sigma_Y^2}\left(u
- - \frac{\sigma_X^2}{\sigma_X^2+\sigma_Y^2}z\right)^2du
+ \exp\left(-\frac{\sigma_X^2+ \sigma_Y^2}{2\sigma_X^2\sigma_Y^2}\left(u
+ - \frac{\sigma_X^2}{\sigma_X^2+\sigma_Y^2}z\right)^2\right)du
\end{displaymath}
We now recognize the integral of the un-normalized cdf of a Gaussian variable.
Hence the integral evaluates to:
@@ -91,12 +91,12 @@ after simplification we obtain the following formula for $g(z)$:
g(z) = \frac{1}{\sqrt{2\pi}\sqrt{\sigma_X^2+\sigma_Y^2}}
\exp\left(- \frac{z^2}{2(\sigma_X^2+\sigma_Y^2)}\right)
\end{displaymath}
-That is, $X+Y$ is a Gaussian variable of mean $0$ and variance
+That is, $X+Y$ is a Gaussian variable with mean $0$ and variance
$\sigma_X^2+\sigma_Y^2$.
-(c) If $X$ has mean $\mu_X$ and $Y$ has mean $\mu_Y$, $X-\mu_X$ and $Y-\mu_Y$
-are still independent variables with the same variance as before and zero mean.
-Applying the previous result. $X+Y-\mu_X-\mu_Y$ is a Gaussian variable with
+(c) If $X$ has mean $\mu_X$ and $Y$ has mean $\mu_Y$, $X-\mu_X$ and $Y-\mu_Y$
+are still independent variables with unchanged variance and zero mean.
+Applying the previous result, $X+Y-\mu_X-\mu_Y$ is a Gaussian variable with
mean $0$ and variance $\sigma_X^2 + \sigma_Y^2$. Hence, $X+Y$ is normally
distributed with mean $\mu_X+\mu_Y$ and variance $\sigma_X^2+\sigma_Y^2$.
@@ -106,16 +106,16 @@ for any interval $[a,b]$ with $a,b>0$:
\begin{align*}
\prob(Y\in[a,b]) = \prob(X\in [\log a, \log b])
&=\frac{1}{\sqrt{2\pi}\sigma_X}\int_{\log a}^{\log b}
- \exp\left(-\frac{1}{2\sigma_X}(x-\mu)^2\right)dx\\
- &=\frac{1}{\sqrt{2\pi}\sigma_X}\int_{a}^{b}
- \exp\left(-\frac{1}{2z\sigma_X}(\log z-\mu)^2\right)dz
+ \exp\left(-\frac{1}{2\sigma_X^2}(x-\mu)^2\right)dx\\
+ &=\frac{1}{\sqrt{2\pi}\sigma_X^2}\int_{a}^{b}
+ \exp\left(-\frac{1}{2z\sigma_X^2}(\log z-\mu)^2\right)dz
\end{align*}
where we used the change of variable $z = e^x$ in the last equality. Hence the
pdf of $Y$:
\begin{displaymath}
- f_Y = \begin{cases}
+ f_Y(z) = \begin{cases}
\frac{1}{\sqrt{2\pi}\sigma_X}
- \exp\left(-\frac{1}{2z\sigma_X}(\log z-\mu)^2\right)&\text{if $x>0$}\\
+ \exp\left(-\frac{1}{2z\sigma_X^2}(\log z-\mu)^2\right)&\text{if $z>0$}\\
0&\text{otherwise}
\end{cases}
\end{displaymath}