summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--final/main.tex26
1 files changed, 24 insertions, 2 deletions
diff --git a/final/main.tex b/final/main.tex
index 6f751df..0258e07 100644
--- a/final/main.tex
+++ b/final/main.tex
@@ -523,10 +523,32 @@ extended, having made the appropriate changes, to the constrained case) as in th
Lemma~6 from \cite{babaioff} yields the following version of the core
decomposition lemma:
-\begin{conjecture}
+\begin{lemma}
$\Rev(\hat{x}, D)\leq \Val(D^C_\emptyset) + \sum_A p_A\Rev(\hat{x}_A,
D^T_A)$.
-\end{conjecture}
+\end{lemma}
+
+\begin{proof}
+ Similarly to the proof of Lemma 6 in \cite{babaioff}, we get:
+ \begin{displaymath}
+ \Rev(\hat{x}, D) \leq \sum_A p_A \Rev(\hat{x}_A, D_A)
+ \end{displaymath}
+ Using Corollary~\ref{cor}, we get that $\Rev(\hat{x}_A, D_A)
+ \leq \Val(D_A^C) + \Rev(\hat{x}_A, D_A^T)$. Hence:
+ \begin{align*}
+ \Rev(\hat{x}, D) &\leq \sum_A p_A\big(\Val(D_A^C) + \Rev(\hat{x}_A,
+ D_A^T) \big)\\
+ &= \sum_A p_A\Val(D_A^C) + \sum_A p_A \Rev(\hat{x}_A,
+ D_A)\\
+ &\leq \sum_A p_A\Val(D_{\emptyset}^C) + \sum_A p_A \Rev(\hat{x}_A,
+ D_A)\\
+ &= \Val(D_{\emptyset}^C) + \sum_A p_A \Rev(\hat{x}_A,
+ D_A)
+ \end{align*}
+ Where the second inequality used that $\Val(D_A^C)\leq
+ \Val(D_{\emptyset}^C)$ and where the last equality used $\sum_A p_A = 1$.
+\end{proof}
+
However, if we keep pushing in this direction, it seems that the approach fails
when trying to obtain the following: