\documentclass[10pt]{article} \usepackage{fullpage} \usepackage{amsmath,amsfonts,amsthm} \usepackage[english]{babel} \usepackage[capitalize, noabbrev]{cleveref} \usepackage{paralist} % these are compressed lists to help fit into a 1 page limit \newenvironment{enumerate*}% {\vspace{-2ex} \begin{enumerate} % \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{enumerate}} \newenvironment{itemize*}% {\vspace{-2ex} \begin{itemize} % \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{itemize}} \newenvironment{description*}% {\vspace{-2ex} \begin{description} % \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{description}} \DeclareMathOperator*{\E}{\mathbb{E}} \let\Pr\relax \DeclareMathOperator*{\Pr}{\mathbb{P}} \newcommand{\inprod}[1]{\left\langle #1 \right\rangle} \newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}} \newcommand{\llbracket}{[\![} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \author{Thibaut Horel \& Paul Tylkin} \title{Economics 2099 Problem Set 1 -- Solutions} \begin{document} \maketitle \section{Exercise 2.5} \begin{enumerate}[(a)] \item We are analyzing the scenario when agent 1 has values in $U[0,1]$ and agent $U[0,\frac{1}{2}]$. Informally, we are considering two different scenarios: one in which agent 1's value exceeds $\frac{1}{2}$, and one in which his value is less than $\frac{1}{2}$. In the first scenario, agent 1 will always win. We formalize this as follows. We first calculate the strategies for each agent. Because we are looking for a Bayes-Nash equilibrium in which the item is always allocated to the agent with the highest value, we can consider $\Pr[v_1 \geq v_2]$ as the probability that the item is allocated to agent 1. For agent 1, $$\Pr[v_1 \geq v_2] = \begin{cases} 1 &\text{ if } v_1 > \frac{1}{2} \\ v_1 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}$$ $$P_1^{FP}(v_1) = s_1(v_1)\cdot \Pr[v_1 \geq v_2] = s_1(v_1) \cdot \begin{cases} 1 &\text{ if } v_1 > \frac{1}{2} \\ v_1 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}$$ For agent 1, $P_1^{SP}(v_1)$ equals $\E[v_2|v_1\geq v_2]\cdot \Pr[v_1 \geq v_2]$. By Revenue Equivalence (Corollary 2.5), for $i \in \{1,2\}$, $P_i^{SP}(v_i) = P_i^{FP}(v_i)$. We directly compute $$\E[v_2|v_1\geq v_2] = \begin{cases} \frac{1}{4} &\text{ if } v_1 > \frac{1}{2} \\ \frac{v_1}{2} &\text{ if } v_1 \leq \frac{1}{2} \end{cases}$$ Combining this, we get $$P_1^{SP}(v_1) = \E[v_2|v_1\geq v_2]\cdot \Pr[v_1 \geq v_2] = \begin{cases} \frac{1}{4} &\text{ if } v_1 > \frac{1}{2} \\ \frac{v_1^2}{2} &\text{ if } v_1 \leq \frac{1}{2} \end{cases}.$$ So we get $$s_1(v_1) = \begin{cases} \frac{1}{4} &\text{ if } v_1 > \frac{1}{2} \\ \frac{v_1}{2} &\text{ if } v_1 \leq \frac{1}{2} \end{cases}.$$ For agent 2, the only case to consider is $v_1 \leq \frac{1}{2}$ (since otherwise agent 2's probability of winning is 0). This case is exactly the same as for agent 1, conditioned on $v_1 \leq \frac{1}{2}$. This leads to $$s_2(v_2) = \frac{v_2}{2}.$$ We need to show two more things: that the strategies we obtain satisfy the restriction that the item is allocated to the agent with the highest value, and that there are no other strategies that dominate the strategy profile described above. If $v_1 > \frac{1}{2}$, then $v_1$ will bid $\frac{1}{4}$ which is greater than or equal to any bid that agent 2 may have, so agent 1 will be allocated the item. If $v_1 \leq \frac{1}{2}$ and $v_1 > v_2$ then $\frac{v_1}{2} > \frac{v_2}{2}$ and he will again be allocated the item. If $v_1 \leq \frac{1}{2}$ and $v_1 < v_2$ then $\frac{v_1}{2} < \frac{v_2}{2}$ and agent 2 will be allocated the item, as desired. Suppose that agent 1 bids greater than $\frac{1}{4}$. Then, his probability of winning does not increase (it is 1 at a bid of $\frac{1}{4}$, and so he pays more without increasing the probability of winning (his utility strictly decreases with a higher bid). Suppose that agent 2 bids greater than $\frac{1}{4}$. Since the largest possible value that agent 2 can have is $\frac{1}{4}$, for any bid greater than $\frac{1}{4}$, he pays more than his value and hence his utility is negative. So we have demonstrated that there is a Bayes-Nash Equilibrium. \item We are analyzing the scenario when agent 1 has values in $U[0,1]$ and agent 2 has values in $U[\frac{1}{2},1]$. There are again two scenarios to consider: one in which agent 1's value exceeds $\frac{1}{2}$, and one in which his value is less than $\frac{1}{2}$. In the first scenario, agent 1 will always lose (i.e. agent 2 will always win). For agent 1,$$\Pr[v_1 \geq v_2] = \begin{cases} \int_{\frac{1}{2}}^{v_1} 2\,dx = 2v_1 -1 &\text{ if } v_1 > \frac{1}{2} \\ 0 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}$$ $$P_1^{FP}(v_1) = s_1(v_1)\cdot \Pr[v_1 \geq v_2] = s_1(v_1) \cdot \begin{cases} 2v_1 - 1 &\text{ if } v_1 > \frac{1}{2} \\ 0 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}$$ For agent 1, $P_1^{SP}(v_1)$ equals $\E[v_2|v_1\geq v_2]\cdot \Pr[v_1 \geq v_2]$. By Revenue Equivalence (Corollary 2.5), for $i \in \{1,2\}$, $P_i^{SP}(v_i) = P_i^{FP}(v_i)$. We directly compute $$\E[v_2|v_1\geq v_2] = \begin{cases} \int_{\frac{1}{2}}^{v_1} 2x\,dx = v_1^2 - \frac{1}{4} &\text{ if } v_1 > \frac{1}{2} \\ 0 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}$$ Thus, $$s_1(v_1) = v_1^2-\frac{1}{4} \text{ if } v_1 > \frac{1}{2}.$$ For agent 2, $$\Pr[v_2 \geq v_1] = \int_{0}^{v_2}\,dx = v_2$$ Computing $$\E[v_1|v_2\geq v_1] = \int_0^{v_2} x\,dx = \frac{v_2^2}{2}$$ So $$s_2(v_2) = \frac{v_2^2}{2}.$$ We will show a counterexample to the requirement that the item it always allocated to the agent with the highest value. Specifically, we will exhibit a scenario where $v_1 < v_2$ but $s_1(v_1) > s_2(v_2)$ and so agent 1 will be allocated the item despite having a lower valuation. Let $v_1 = \frac{7}{8}$ and let $v_2 = 1$. Then, $$s_1(v_1) = \frac{49}{64} - \frac{16}{64} = \frac{33}{64}$$ but $$s_2(v_2) = \frac{1}{2.}$$ Therefore, no Bayes-Nash Equilibrium with the desired properties can exist. \end{enumerate} \section{Exercise 2.10} Characterization by Theorem 2.2. By Theorem 2.10, there are no asymmetric strategy profiles (there is a unique symmetric Bayes-Nash equilibrium). \end{document}