summaryrefslogtreecommitdiffstats
path: root/paper/sections/appendix.tex
diff options
context:
space:
mode:
Diffstat (limited to 'paper/sections/appendix.tex')
-rw-r--r--paper/sections/appendix.tex349
1 files changed, 291 insertions, 58 deletions
diff --git a/paper/sections/appendix.tex b/paper/sections/appendix.tex
index 64ca77e..aa0ef1d 100644
--- a/paper/sections/appendix.tex
+++ b/paper/sections/appendix.tex
@@ -1,76 +1,309 @@
-
-\noindent \textbf{From expectation to high probability.}
-
-%\begin{lemma}\label{lemma:nd}
-% Let $A\subseteq\mathcal{U}$ and $x=(v,c)\in\mathcal{U}\setminus A$, then
-% the function $b\mapsto \mathcal{O}(A\cup\{x\},b)-\mathcal{O}(A,b)$ is
-% non-decreasing over $\reals^+$.
-%\end{lemma}
-
-
-
-
-
-
-\begin{proof}[of Proposition~\ref{main_result}]
- For each realization of the neighbors $R$, let us define by $X_R$ the
- random set which includes each $u\in R$ with probability $q_u$ on the
- second day and:
+\section{Adaptivity proofs}
+\begin{proof}[of Proposition~\ref{prop:gap}]
+ We will first show that the optimal adaptive policy can be interpreted as
+ a non-adaptive policy. Let $S$ be the optimal adaptive
+ solution and define $\delta_R:\neigh{X}\mapsto \{0,1\}$:
\begin{displaymath}
- \tilde{X}_R=
- \begin{cases}
- X_R&\text{if } |X_R|\leq t\\
- \emptyset&\text{otherwise}
- \end{cases}
+ \delta_R(u) \defeq \begin{cases}
+ 1&\text{if } u\in\argmax\big\{f(T);\; T\subseteq R,\; |T|\leq
+ k-|S|\big\} \\
+ 0&\text{otherwise}
+ \end{cases},
\end{displaymath}
- where $t = k-|S|$. $\tilde{X}_R$ is a random variable over the feasible
- solutions on the second day. As a consequence:
+ one can write
\begin{displaymath}
- A(S) \geq \sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big]
+ \begin{split}
+ \sum_{R\subseteq\neigh{S}} p_R
+ \max_{\substack{T\subseteq R\\|T|\leq k-|S|}}f(T)
+ &=
+ \sum_{R\subseteq\neigh{S}} p_R
+ \sum_{u\in\neigh{X}}\delta_R(u)w_u\\
+ &=
+ \sum_{u\in\neigh{X}}w_u\sum_{R\subseteq\neigh{S}}p_R\delta_R(u).
+ \end{split}
\end{displaymath}
- Let us define by $Y$ the random set which includes each $u\in\neigh{X}$
- with probability $p_uq_u$ and:
+
+ Let us now define for $u\in\neigh{X}$:
\begin{displaymath}
- \tilde{Y}=
- \begin{cases}
- Y&\text{if } |Y|\leq t\\
- \emptyset&\text{otherwise}
+ q_u \defeq \begin{cases}
+ \sum_{R\subseteq\neigh{S}}\frac{p_R}{p_u}\delta_R(u)
+ &\text{if }p_u\neq 0\\
+ 0&\text{otherwise}
\end{cases}.
\end{displaymath}
- It is easy to see that $\tilde{X}_R$ is the conditional expectation of
- $\tilde{Y}$ given
- $R$. Hence:
+ This allows us to write:
\begin{displaymath}
- \sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big]
- = \mathbb{E}\big[f(\tilde{Y})\big]
+ \sum_{R\subseteq\neigh{S}} p_R
+ \max_{\substack{T\subseteq R\\|T|\leq k-|S|}}f(T)
+ = \sum_{u\in\neigh{X}}p_uq_uw_u = F(\mathbf{p}\circ\mathbf{q})
\end{displaymath}
- But:
- \begin{align*}
- \mathbb{E}\big[f(\tilde{Y})\big]
- &=\sum_{T\subseteq\neigh{X}}\mathbb{P}\big[\tilde{Y}=T\big]f(T)
- = \sum_{\substack{T\subseteq\neigh{X}\\|T|\leq
- t}}\mathbb{P}\big[Y=T\big]f(T)\\
- &= \mathbb{E}\big[f(Y)\big]-\sum_{\substack{T\subseteq\neigh{X}\\|T|>
- t}}\mathbb{P}\big[Y=T\big]f(T)
- \end{align*}
- Roughly:
+ where the last equality is obtained from \eqref{eq:multi} by successively using the linearity of the expectation and the linearity of $f$.
+
+ Furthermore, observe that $q_u\in[0,1]$, $q_u=0$ if $u\notin\neigh{S}$ and:
\begin{displaymath}
- \sum_{\substack{T\subseteq\neigh{X}\\|T|>
- t}}\mathbb{P}\big[Y=T\big]f(T)\leq
- \frac{1}{2}\mathbb{E}\big[f(Y)\big]
+ \begin{split}
+ |S|+\sum_{u\in\neigh{X}}p_uq_u
+ &= |S|+\sum_{R\subseteq\neigh{S}}p_R\sum_{u\in\neigh{X}}\delta_R(u)\\
+ &\leq |S| + \sum_{R\subseteq\neigh{S}}p_R(k-|S|)\leq k
+ \end{split}
\end{displaymath}
- Combining the above inequalities we get:
+
+ Hence, $(S,\mathbf{q})\in\mathcal{F}_{NA}$. In other words, we have written the optimal adaptive solution as a relaxed
+ non-adaptive solution. This conclude the proof of the proposition.
+\end{proof}
+
+\vspace{0.5em}
+
+\begin{proof}[of Proposition~\ref{prop:cr}]
+ Using the definition of $\mathrm{A}(S)$, one can write:
\begin{displaymath}
- A(S)\geq \frac{1}{2} \mathbb{E}\big[f(Y)\big]
+ \mathrm{A}(S) = \sum_{R\subseteq\neigh{S}} p_R
+ \max_{\substack{T\subseteq R\\|T|\leq k-|S|}}f(T)
+ \geq \sum_{R\subseteq\neigh{S}} p_R \mathbf{E}\big[f(I)\big]
\end{displaymath}
- But $\mathbb{E}\big[f(Y)\big]$ is precisely the value of the non-adaptive
- solution computed by Algorithm~\ref{alg:comb} which is
- a $\left(1-\frac{1}{e}\right)$ approximation of the
- optimal non adaptive solution. Hence:
+ where the inequality comes from the fact that $I$ is a feasible random set: $|I|\leq k-|S|$, hence the expected value of $f(I)$ is bounded by the maximum of $f$ over feasible sets.
+
+Equation~\eqref{eq:cr} then implies:
+\begin{equation}\label{eq:tmp}
+ \mathrm{A}(S)
+ \geq (1-\varepsilon)\sum_{R\subseteq\neigh{S}} p_R F(\mathbf{q})
+ = (1-\varepsilon)F(\mathbf{p}\circ\mathbf{q}).
+\end{equation}
+
+Equation~\eqref{eq:tmp} holds for any $\varepsilon\geq 0$. In particular, for $\varepsilon$ smaller than $\inf_{S\neq T} |A(S)-A(T)|$, we obtain that $\mathrm{A}(S)\geq F(\mathbf{p}\circ\mathbf{q})$. Note that such a $\varepsilon$ is at most polynomially small in the size of the instance.
+$(S, \mathbf{q})$ is an $\alpha$-approximate non adaptive solution, hence $F(\mathbf{p}\circ\mathbf{q}) \geq \alpha\mathrm{OPT}_{NA}$. We can then conclude by applying Proposition~\ref{prop:gap}.
+\end{proof}
+
+\section{Algorithms Proofs}
+We first discuss the NP-hardness of the problem.
+
+\noindent \textbf{\textsc{NP}-Hardness.} In contrast to standard influence maximization, adaptive seeding is already \textsc{NP}-Hard even for the simplest cases. In the case when $f(S)=|S|$ and all probabilities equal one, the decision problem is whether given a budget $k$ and target value $\ell$ there exists a subset of $X$ of size $k-t$ which yields a solution with expected value of $\ell$ using $t$ nodes in $\mathcal{N}(X)$. This is equivalent to deciding whether there are $k-t$ nodes in $X$ that have $t$ neighbors in $\mathcal{N}(X)$. To see this is \textsc{NP}-hard, consider reducing from \textsc{Set-Cover} where there is one node $i$ for each input set $T_i$, $1\leq i\leq n$, with $\neigh{i}= T_i$ and integers $k,\ell$, and the output is ``yes'' if there is a family of $k$ sets in the input which cover at least $\ell$ elements, and ``no'' otherwise.
+
+
+\subsection{LP-based approach}
+In the LP-based approach we rounded the solution using the pipage rounding method. We discuss this with greater detail here.
+
+\noindent \textbf{Pipage Rounding.}
+The pipage rounding method~\cite{pipage} is a deterministic rounding method that can be applied to a variety of problems. In particular, it can be applied to LP-relaxations of the \textsc{Max-K-Cover} problem where we are given a family of sets that cover elements of a universe and the goal is to find $k$ subsets whose union has the maximal cardinality. The LP-relaxation is a fractional solution over subsets, and the pipage rounding procedure then rounds the allocation in linear time, and the integral solution is guaranteed to be within a factor of $(1-1/e)$ of the fractional solution.
+We make the following key observation: for any given $\textbf{q}$, one can remove all elements in $\mathcal{N}(X)$ for which $q_{u}=0$, without changing the value of any solution $(\boldsymbol\lambda,\textbf{q})$.
+Our rounding procedure can therefore be described as follows: given a solution $(\boldsymbol\lambda,\textbf{q})$ we remove all nodes $u \in \mathcal{N}(X)$ for which $q_{u}=0$, which leaves us with a fractional solution to a (weighted) version of the \textsc{Max-K-Cover} problem where nodes in $X$ are the sets and the universe is the set of weighted nodes in $\mathcal{N}(X)$ that were not removed. We can therefore apply pipage rounding and lose only a factor of $(1-1/e)$ in quality of the solution.
+
+\subsection{Combinatorial Algorithm}
+We include the missing proofs from the combinatorial algorithm section. The scalability and implementation in MapReduce are discussed in this section as well.
+
+\begin{proof}[of Lemma~\ref{lemma:nd}]
+\emph{W.l.o.g} we can rename and order the pairs in $T$ so that $w_1\geq w_2\geq\ldots\geq w_m $.
+Then, $\mathcal{O}(T,b)$ has the following simple piecewise linear expression:
+\begin{displaymath}\label{eq:pw}
+ \mathcal{O}(T,b) =
+ \begin{cases}
+ b w_1&\text{if }0\leq b<p_1\\
+ \displaystyle
+ \sum_{k=1}^{i-1}p_k(w_k-w_i)
+ + b w_i
+ &\displaystyle\text{if } 0\leq b - \sum_{k=1}^{i-1}p_k< p_i\\
+ \displaystyle
+ \sum_{k=1}^m p_kw_k
+ &\displaystyle\text{if } b\geq\sum_{i=1}^m p_k
+
+ \end{cases}
+\end{displaymath}
+
+Let us define for $t\in\reals^+$, $n(t)\defeq \inf\Big\{i\text{ s.t.
+} \sum_{k=1}^i p_k > t\Big \}$ with $n(t)=+\infty$ when the set is empty. In
+particular, note that $x\mapsto n(t)$ is non-decreasing. Denoting
+$\partial_+\mathcal{O}_T$ the right derivative of $\mathcal{O}(T,\cdot)$, one
+can write $\partial_+\mathcal{O}_T(t)=w_{n(t)}$, with the convention that
+$w_\infty = 0$.
+
+Writing $i \defeq \sup\Big\{j\text{ s.t.
+} w_j\geq w_x\Big\}$, it is easy to see that
+$\partial_+\mathcal{O}_{T\cup\{x\}}\geq\partial_+\mathcal{O}_T$. Indeed:
+\begin{enumerate}
+ \item if $n(t)\leq i$ then $\partial_+\mathcal{O}_{T\cup\{x\}}(t)
+ = \partial_+\mathcal{O}_T(t)= w_{n(t)}$.
+ \item if $n(t)\geq i+1$ and $n(t-c)\leq i$ then $\partial_+\mathcal{O}_{T\cup\{x\}}(t)
+ = w_x\geq w_{n(t)}= \partial_+\mathcal{O}_T(t)$.
+ \item if $n(t-c)\geq i+1$, then $\partial_+\mathcal{O}_{T\cup\{x\}}
+ = w_{n(t-c)}\geq w_{n(t)}=\partial_+\mathcal{O}_T(t)$.
+\end{enumerate}
+
+Let us now consider $b$ and $c$ such that $b\leq c$. Then, using the integral
+representation of $\mathcal{O}(T\cup\{x\},\cdot)$ and $\mathcal{O}(T,\cdot)$, we get:
+\begin{multline*}
+ \mathcal{O}(T\cup\{x\},c)-\mathcal{O}(T\cup\{x\},b)=\int_b^c\partial_+\mathcal{O}_{T\cup\{x\}}(t)dt\\
+ \geq\int_b^c\partial_+\mathcal{O}_T(t)dt=\mathcal{O}(T,c)-\mathcal{O}(T,b)
+\end{multline*}
+Re-ordering the terms, $\mathcal{O}(T\cup\{x\},c)-\mathcal{O}(T,c)\geq
+\mathcal{O}(T\cup\{x\},b)-\mathcal{O}(T,b)$
+which concludes the proof of the lemma.
+\end{proof}
+
+\vspace{0.5em}
+
+\begin{proof}[of Lemma~\ref{lemma:sub}]
+ Let $T\subseteq\neigh{X}$ and $x, y\in\neigh{X}\setminus T$. Using the
+ second-order characterization of submodular functions, it suffices to show
+ that:
+ \begin{displaymath}\label{eq:so}
+ \mathcal{O}(T\cup\{x\},b)-\mathcal{O}(T,b)\geq
+ \mathcal{O}(T\cup\{y, x\},b)-\mathcal{O}(T\cup\{y\},b)
+ \end{displaymath}
+
+ We distinguish two cases based on the relative position of $w_x$ and $w_y$.
+ The following notations will be useful: $S_T^x \defeq \big\{u\in
+ T\text{ s.t. }w_x\leq w_u\big\}$ and $P_T^x\defeq
+ T\setminus S_T^x$.
+
+ \textbf{Case 1:} If $w_y\geq w_x$, then one can
+ write:
+ \begin{gather*}
+ \mathcal{O}(T\cup\{y,x\},b) = \mathcal{O}(P_T^y\cup\{y\},b_1)+
+ \mathcal{O}(S_T^y\cup\{x\},b_2)\\
+ \mathcal{O}(T\cup\{y\},b) = \mathcal{O}(P_T^y\cup\{y\},b_1)
+ + \mathcal{O}(S_T^y,b_2)
+ \end{gather*}
+ where $b_1$ is the fraction of the budget $b$ spent on $P_T^y\cup\{y\}$ and
+ $b_2=b-b_1$.
+
+ Similarly:
+ \begin{gather*}
+ \mathcal{O}(T\cup\{x\},b) = \mathcal{O}(P_T^y, c_1) + \mathcal{O}(S_T^y\cup\{x\},c_2)\\
+ \mathcal{O}(T, b) = \mathcal{O}(P_T^y, c_1) + \mathcal{O}(S_T^y,c_2)
+ \end{gather*}
+ where $c_1$ is the fraction of the budget $b$ spent on $P_T^y$ and $c_2
+ = b - c_1$.
+
+ Note that $b_1\geq c_1$: an optimal solution will first spent as much
+ budget as possible on $P_T^y\cup\{y\}$ before adding elements in
+ $S_T^y\cup\{x\}$.
+
+ In this case:
\begin{displaymath}
- A(S) \geq \frac{1}{2}\left(1-\frac{1}{e}\right) OPT_{NA}
+ \begin{split}
+ \mathcal{O}(T\cup\{x\},b)-\mathcal{O}(T,b)&=
+ \mathcal{O}(S_T^y\cup\{x\},c_2)+\mathcal{O}(S_T^y,c_2)\\
+ &\geq \mathcal{O}(S_T^y\cup\{x\},b_2)+\mathcal{O}(S_T^y,b_2)\\
+ & = \mathcal{O}(T\cup\{y, x\},b)-\mathcal{O}(T\cup\{y\},b)
+ \end{split}
\end{displaymath}
- Finally, we conclude with Proposition~\ref{prop:gap}
+ where the inequality comes from Lemma~\ref{lemma:nd} and
+ $c_2\geq b_2$.
+
+ \textbf{Case 2:} If $w_x > w_y$, we now decompose
+ the solution on $P_T^x$ and $S_T^x$:
+ \begin{gather*}
+ \mathcal{O}(T\cup\{x\},b) = \mathcal{O}(P_T^x\cup\{x\},b_1)
+ + \mathcal{O}(S_T^x,b_2)\\
+ \mathcal{O}(T,b) = \mathcal{O}(P_T^x,c_1)+\mathcal{O}(S_T^x,c_2)\\
+ %\intertext{and}
+ \mathcal{O}(T\cup\{y, x\},b) = \mathcal{O}(P_T^x\cup\{x\},b_1)
+ + \mathcal{O}(S_T^x\cup\{y\},b_2)\\
+ \mathcal{O}(T\cup\{y\},b) = \mathcal{O}(P_T^x,c_1)+\mathcal{O}(S_T^x\cup\{y\},c_2)
+ \end{gather*}
+ with $b_1+b_2=b$, $c_1+c_2=b$ and $b_2\leq c_2$.
+
+ In this case again:
+ \begin{multline*}
+ \mathcal{O}(T\cup\{x\},b)-\mathcal{O}(T,b)=
+ \mathcal{O}(S_T^x,b_2)-\mathcal{O}(S_T^x,c_2)\\
+ \geq \mathcal{O}(S_T^x\cup\{y\},b_2)-\mathcal{O}(S_T^x\cup\{y\},c_2)\\
+ = \mathcal{O}(T\cup\{y, x\},b)-\mathcal{O}(T\cup\{y\},b)
+ \end{multline*}
+ where the inequality uses Lemma~\ref{lemma:nd} and $c_2\geq b_2$.
+
+ In both cases, we were able to obtain the second-order characterization of submodularity. This concludes the proof of the lemma.
\end{proof}
+\vspace{0.5em}
+
+\begin{proof}[of Proposition~\ref{prop:sub}]
+ Let us consider $S$ and $T$ such that $S\subseteq T\subseteq X$ and $x\in
+ X\setminus T$. In particular, note that $\neigh{S}\subseteq\neigh{T}$.
+
+ Let us write $\neigh{S\cup\{x\}}=\neigh{S}\cup R$ with $\neigh{S}\cap
+ R=\emptyset$ and similarly, $\neigh{T\cup\{x\}}=\neigh{T}\cup R'$ with
+ $\neigh{T}\cap R'=\emptyset$. It is clear that $R'\subseteq R$. Writing $R'=\{u_1,\ldots,u_k\}$:
+ \begin{multline*}
+ \mathcal{O}(\neigh{T\cup\{x\}},b)- \mathcal{O}(\neigh{T},b)\\
+ =\sum_{i=1}^k\mathcal{O}(\neigh{T}\cup\{u_1,\ldots u_i\},b)
+ -\mathcal{O}(\neigh{T}\cup\{u_1,\ldots u_{i-1}\},b)\\
+ \leq \sum_{i=1}^k\mathcal{O}(\neigh{S}\cup\{u_1,\ldots u_i\},b)
+ -\mathcal{O}(\neigh{S}\cup\{u_1,\ldots u_{i-1}\},b)\\
+ =\mathcal{O}(\neigh{S}\cup R',b)-\mathcal{O}(\neigh{S},b)
+ \end{multline*}
+ where the inequality comes from the submodularity of $\mathcal{O}(\cdot,b)$ proved in Lemma~\ref{lemma:sub}. This same function is also obviously set-increasing, hence:
+ \begin{multline*}
+ \mathcal{O}(\neigh{S}\cup R',b)-\mathcal{O}(\neigh{S},b)\\
+ \leq \mathcal{O}(\neigh{S}\cup R,b)-\mathcal{O}(\neigh{S},b)\\
+ =\mathcal{O}(\neigh{S\cup\{x\}},b)-\mathcal{O}(\neigh{S},b)
+ \end{multline*}
+ This concludes the proof of the proposition.
+\end{proof}
+
+
+\begin{proof}[of Proposition~\ref{prop:main_result}]
+ We simply note that the content of the outer \textsf{for} loop on line 2 of Algorithm~\ref{alg:comb} is the greedy submodular maximization algorithm of \cite{nemhauser}. Since $\mathcal{O}(\neigh{\cdot}, t)$ is submodular (Proposition~\ref{prop:sub}), this solves the inner $\max$ in \eqref{eq:sub-mod} with an approximation ratio of $(1-1/e)$. The outer \textsf{for} loop then computes the outer $\max$ of \eqref{eq:sub-mod}.
+
+ As a consequence, Algorithm~\ref{alg:comb} computes a $(1-1/e)$-approximate non-adaptive solution. We conclude by applying Proposition~\ref{prop:cr}.
+\end{proof}
+
+\subsection{Parallelization}
+As discussed in the body of the paper, the algorithm can be parallelized across $k$ different machines, each one computing an approximation for a fixed budget $k-t$ in the first stage and $t$ in the second.
+A slightly more sophisticated approach is to consider only $\log n$ splits: $(1,k-1),(2,k-2),\ldots,(2^{\lfloor \log n \rfloor},1)$ and then select the best solution from this set. It is not hard to see that in comparison to the previous approach, this would reduce the approximation guarantee by a factor of at most 2: if the optimal solution is obtained by spending $t$ on the first stage and $k-t$ in the second stage, then since $t \leq 2\cdot2^{\lfloor \log t \rfloor}$ the solution computed for $(2^{\lfloor \log t \rfloor}, k - 2^{\lfloor \log t \rfloor})$ will have at least half that value.
+More generally, for any $\epsilon>0$ one can parallelize over $\log_{1+\epsilon}n$ machines at the cost of losing a factor of $(1+\epsilon)$ in the approximation guarantee.
+
+\subsection{Implementation in MapReduce}
+
+As noted in Section~\ref{sec:comb}, lines 4 to 7 of Algorithm~\ref{alg:comb}
+correspond to the greedy heuristic of \cite{nemhauser} applied to the
+submodular function $f_t(S) \defeq \mathcal{O}\big(\neigh{S}, t\big)$.
+A variant of this heuristic, namely the $\varepsilon$-greedy heuristic,
+combined with the \textsc{Sample\&Prune} method of \cite{mr} allows us to write
+a MapReduce version of Algorithm~\ref{alg:comb}. The resulting algorithm is
+described in Algorithm~\ref{alg:combmr}
+
+\begin{algorithm}
+ \caption{Combinatorial algorithm, MapReduce}
+ \label{alg:combmr}
+ \algsetup{indent=2em}
+ \begin{algorithmic}[1]
+ \STATE $S\leftarrow \emptyset$
+ \FOR{$t=1$ \TO $k-1$}
+ \STATE $S_t\leftarrow \emptyset$
+ \FOR{$i=1$ \TO $\log_{1+\varepsilon}\Delta$}
+ \STATE $U\leftarrow X$, $S'\leftarrow \emptyset$
+ \WHILE{$|U|>0$}
+ \STATE $R\leftarrow$ sample from $U$ w.p. $\min\left(1,
+ \frac{\ell}{|U|}\right)$
+ \WHILE{$|R|>0$ \OR $|S_t\cup S'|< k$}
+ \STATE $x\leftarrow$ some element from $R$
+ \IF{$\nabla f_t(S_t\cup S', x)\geq\frac{\Delta}{(1+\varepsilon)^i}$}
+ \STATE $S'\leftarrow S'\cup\{x\}$
+ \ENDIF
+ \STATE $R\leftarrow R\setminus\{x\}$
+ \ENDWHILE
+ \STATE $S_t\leftarrow S_t\cup S'$
+ \STATE $U\leftarrow\{x\in U\,|\, \nabla f_t(S_t,
+ x)\geq\frac{\Delta}{(1+\varepsilon)^i}\}$
+ \ENDWHILE
+ \ENDFOR
+ \IF{$\mathcal{O}(\neigh{S_t},t)>\mathcal{O}(\neigh{S},k-|S|)$}
+ \STATE $S\leftarrow S_t$
+ \ENDIF
+ \ENDFOR
+ \RETURN $S$
+ \end{algorithmic}
+\end{algorithm}
+
+We denoted by $\nabla f_t(S, x)$ the marginal increment of $x$ to the set $S$
+for the function $f_t$, $\nabla f_t(S, x) = f_t(S\cup\{x\}) - f_t(S)$.
+$\Delta$ is an upper bound on the marginal contribution of any element. In our
+case, $\Delta = \max_{u\in\neigh{X}} w_u$ provides such an upper bound. The
+sampling in line 7 selects a small enough number of elements that the
+\texttt{while} loop from lines 8 to 14 can be executed on a single machine.
+Furthermore, lines 7 and 16 can be implemented in one round of MapReduce each.
+The approximation ratio of Algorithm~\ref{alg:combmr} is
+$1-\frac{1}{e}-\varepsilon$. The proof of this result as well as the optimal
+choice of $\ell$ follow from Theorem 10 in \cite{mr}.