\section{Adaptivity proofs} \label{sec:ad-proofs} \begin{proof}[of Proposition~\ref{prop:gap}] We will first show that the optimal adaptive policy can be interpreted as a non-adaptive policy. Let $S$ be the optimal adaptive solution and define $\delta_R:\neigh{X}\mapsto \{0,1\}$: \begin{displaymath} \delta_R(u) \defeq \begin{cases} 1&\text{if } u\in\argmax\big\{f(T);\; T\subseteq R,\; |T|\leq k-|S|\big\} \\ 0&\text{otherwise} \end{cases}, \end{displaymath} one can write \begin{displaymath} \begin{split} \sum_{R\subseteq\neigh{S}} p_R \max_{\substack{T\subseteq R\\|T|\leq k-|S|}}f(T) &= \sum_{R\subseteq\neigh{S}} p_R \sum_{u\in\neigh{X}}\delta_R(u)w_u\\ &= \sum_{u\in\neigh{X}}w_u\sum_{R\subseteq\neigh{S}}p_R\delta_R(u). \end{split} \end{displaymath} Let us now define for $u\in\neigh{X}$: \begin{displaymath} q_u \defeq \begin{cases} \sum_{R\subseteq\neigh{S}}\frac{p_R}{p_u}\delta_R(u) &\text{if }p_u\neq 0\\ 0&\text{otherwise} \end{cases}. \end{displaymath} This allows us to write: \begin{displaymath} \sum_{R\subseteq\neigh{S}} p_R \max_{\substack{T\subseteq R\\|T|\leq k-|S|}}f(T) = \sum_{u\in\neigh{X}}p_uq_uw_u = F(\mathbf{p}\circ\mathbf{q}) \end{displaymath} where the last equality is obtained from \eqref{eq:multi} by successively using the linearity of the expectation and the linearity of $f$. Furthermore, observe that $q_u\in[0,1]$, $q_u=0$ if $u\notin\neigh{S}$ and: \begin{displaymath} \begin{split} |S|+\sum_{u\in\neigh{X}}p_uq_u &= |S|+\sum_{R\subseteq\neigh{S}}p_R\sum_{u\in\neigh{X}}\delta_R(u)\\ &\leq |S| + \sum_{R\subseteq\neigh{S}}p_R(k-|S|)\leq k \end{split} \end{displaymath} Hence, $(S,\mathbf{q})\in\mathcal{F}_{NA}$. In other words, we have written the optimal adaptive solution as a relaxed non-adaptive solution. This conclude the proof of the proposition. \end{proof} \vspace{0.5em} \begin{proof}[of Proposition~\ref{prop:cr}] Using the definition of $\mathrm{A}(S)$, one can write: \begin{displaymath} \mathrm{A}(S) = \sum_{R\subseteq\neigh{S}} p_R \max_{\substack{T\subseteq R\\|T|\leq k-|S|}}f(T) \geq \sum_{R\subseteq\neigh{S}} p_R \mathbf{E}\big[f(I)\big] \end{displaymath} where the inequality comes from the fact that $I$ is a feasible random set: $|I|\leq k-|S|$, hence the expected value of $f(I)$ is bounded by the maximum of $f$ over feasible sets. Equation~\eqref{eq:cr} then implies: \begin{equation}\label{eq:tmp} \mathrm{A}(S) \geq (1-\varepsilon)\sum_{R\subseteq\neigh{S}} p_R F(\mathbf{q}) = (1-\varepsilon)F(\mathbf{p}\circ\mathbf{q}). \end{equation} Equation~\eqref{eq:tmp} holds for any $\varepsilon\geq 0$. In particular, for $\varepsilon$ smaller than $\inf_{S\neq T} |A(S)-A(T)|$, we obtain that $\mathrm{A}(S)\geq F(\mathbf{p}\circ\mathbf{q})$. Note that such a $\varepsilon$ is at most polynomially small in the size of the instance. $(S, \mathbf{q})$ is an $\alpha$-approximate non adaptive solution, hence $F(\mathbf{p}\circ\mathbf{q}) \geq \alpha\mathrm{OPT}_{NA}$. We can then conclude by applying Proposition~\ref{prop:gap}. \end{proof} \section{Algorithms Proofs} \label{sec:alg-proofs} We first discuss the NP-hardness of the problem. \noindent \textbf{\textsc{NP}-Hardness.} In contrast to standard influence maximization, adaptive seeding is already \textsc{NP}-Hard even for the simplest cases. In the case when $f(S)=|S|$ and all probabilities equal one, the decision problem is whether given a budget $k$ and target value $\ell$ there exists a subset of $X$ of size $k-t$ which yields a solution with expected value of $\ell$ using $t$ nodes in $\mathcal{N}(X)$. This is equivalent to deciding whether there are $k-t$ nodes in $X$ that have $t$ neighbors in $\mathcal{N}(X)$. To see this is \textsc{NP}-hard, consider reducing from \textsc{Set-Cover} where there is one node $i$ for each input set $T_i$, $1\leq i\leq n$, with $\neigh{i}= T_i$ and integers $k,\ell$, and the output is ``yes'' if there is a family of $k$ sets in the input which cover at least $\ell$ elements, and ``no'' otherwise. \subsection{LP-based approach} \label{sec:lp-proofs} In the LP-based approach we rounded the solution using the pipage rounding method. We discuss this with greater detail here. \noindent \textbf{Pipage Rounding.} The pipage rounding method~\cite{pipage} is a deterministic rounding method that can be applied to a variety of problems. In particular, it can be applied to LP-relaxations of the \textsc{Max-K-Cover} problem where we are given a family of sets that cover elements of a universe and the goal is to find $k$ subsets whose union has the maximal cardinality. The LP-relaxation is a fractional solution over subsets, and the pipage rounding procedure then rounds the allocation in linear time, and the integral solution is guaranteed to be within a factor of $(1-1/e)$ of the fractional solution. We make the following key observation: for any given $\textbf{q}$, one can remove all elements in $\mathcal{N}(X)$ for which $q_{u}=0$, without changing the value of any solution $(\boldsymbol\lambda,\textbf{q})$. Our rounding procedure can therefore be described as follows: given a solution $(\boldsymbol\lambda,\textbf{q})$ we remove all nodes $u \in \mathcal{N}(X)$ for which $q_{u}=0$, which leaves us with a fractional solution to a (weighted) version of the \textsc{Max-K-Cover} problem where nodes in $X$ are the sets and the universe is the set of weighted nodes in $\mathcal{N}(X)$ that were not removed. We can therefore apply pipage rounding and lose only a factor of $(1-1/e)$ in quality of the solution. \subsection{Combinatorial Algorithm} \label{sec:comb-proofs} We include the missing proofs from the combinatorial algorithm section. The scalability and implementation in MapReduce are discussed in this section as well. \begin{proof}[of Lemma~\ref{lemma:nd}] \emph{W.l.o.g} we can rename and order the pairs in $T$ so that $w_1\geq w_2\geq\ldots\geq w_m $. Then, $\mathcal{O}(T,b)$ has the following simple piecewise linear expression: \begin{displaymath}\label{eq:pw} \mathcal{O}(T,b) = \begin{cases} b w_1&\text{if }0\leq b t\Big \}$ with $n(t)=+\infty$ when the set is empty. In particular, note that $x\mapsto n(t)$ is non-decreasing. Denoting $\partial_+\mathcal{O}_T$ the right derivative of $\mathcal{O}(T,\cdot)$, one can write $\partial_+\mathcal{O}_T(t)=w_{n(t)}$, with the convention that $w_\infty = 0$. Writing $i \defeq \sup\Big\{j\text{ s.t. } w_j\geq w_x\Big\}$, it is easy to see that $\partial_+\mathcal{O}_{T\cup\{x\}}\geq\partial_+\mathcal{O}_T$. Indeed: \begin{enumerate} \item if $n(t)\leq i$ then $\partial_+\mathcal{O}_{T\cup\{x\}}(t) = \partial_+\mathcal{O}_T(t)= w_{n(t)}$. \item if $n(t)\geq i+1$ and $n(t-c)\leq i$ then $\partial_+\mathcal{O}_{T\cup\{x\}}(t) = w_x\geq w_{n(t)}= \partial_+\mathcal{O}_T(t)$. \item if $n(t-c)\geq i+1$, then $\partial_+\mathcal{O}_{T\cup\{x\}} = w_{n(t-c)}\geq w_{n(t)}=\partial_+\mathcal{O}_T(t)$. \end{enumerate} Let us now consider $b$ and $c$ such that $b\leq c$. Then, using the integral representation of $\mathcal{O}(T\cup\{x\},\cdot)$ and $\mathcal{O}(T,\cdot)$, we get: \begin{multline*} \mathcal{O}(T\cup\{x\},c)-\mathcal{O}(T\cup\{x\},b)=\int_b^c\partial_+\mathcal{O}_{T\cup\{x\}}(t)dt\\ \geq\int_b^c\partial_+\mathcal{O}_T(t)dt=\mathcal{O}(T,c)-\mathcal{O}(T,b) \end{multline*} Re-ordering the terms, $\mathcal{O}(T\cup\{x\},c)-\mathcal{O}(T,c)\geq \mathcal{O}(T\cup\{x\},b)-\mathcal{O}(T,b)$ which concludes the proof of the lemma. \end{proof} \vspace{0.5em} \begin{proof}[of Lemma~\ref{lemma:sub}] Let $T\subseteq\neigh{X}$ and $x, y\in\neigh{X}\setminus T$. Using the second-order characterization of submodular functions, it suffices to show that: \begin{displaymath}\label{eq:so} \mathcal{O}(T\cup\{x\},b)-\mathcal{O}(T,b)\geq \mathcal{O}(T\cup\{y, x\},b)-\mathcal{O}(T\cup\{y\},b) \end{displaymath} We distinguish two cases based on the relative position of $w_x$ and $w_y$. The following notations will be useful: $S_T^x \defeq \big\{u\in T\text{ s.t. }w_x\leq w_u\big\}$ and $P_T^x\defeq T\setminus S_T^x$. \textbf{Case 1:} If $w_y\geq w_x$, then one can write: \begin{gather*} \mathcal{O}(T\cup\{y,x\},b) = \mathcal{O}(P_T^y\cup\{y\},b_1)+ \mathcal{O}(S_T^y\cup\{x\},b_2)\\ \mathcal{O}(T\cup\{y\},b) = \mathcal{O}(P_T^y\cup\{y\},b_1) + \mathcal{O}(S_T^y,b_2) \end{gather*} where $b_1$ is the fraction of the budget $b$ spent on $P_T^y\cup\{y\}$ and $b_2=b-b_1$. Similarly: \begin{gather*} \mathcal{O}(T\cup\{x\},b) = \mathcal{O}(P_T^y, c_1) + \mathcal{O}(S_T^y\cup\{x\},c_2)\\ \mathcal{O}(T, b) = \mathcal{O}(P_T^y, c_1) + \mathcal{O}(S_T^y,c_2) \end{gather*} where $c_1$ is the fraction of the budget $b$ spent on $P_T^y$ and $c_2 = b - c_1$. Note that $b_1\geq c_1$: an optimal solution will first spent as much budget as possible on $P_T^y\cup\{y\}$ before adding elements in $S_T^y\cup\{x\}$. In this case: \begin{displaymath} \begin{split} \mathcal{O}(T\cup\{x\},b)-\mathcal{O}(T,b)&= \mathcal{O}(S_T^y\cup\{x\},c_2)+\mathcal{O}(S_T^y,c_2)\\ &\geq \mathcal{O}(S_T^y\cup\{x\},b_2)+\mathcal{O}(S_T^y,b_2)\\ & = \mathcal{O}(T\cup\{y, x\},b)-\mathcal{O}(T\cup\{y\},b) \end{split} \end{displaymath} where the inequality comes from Lemma~\ref{lemma:nd} and $c_2\geq b_2$. \textbf{Case 2:} If $w_x > w_y$, we now decompose the solution on $P_T^x$ and $S_T^x$: \begin{gather*} \mathcal{O}(T\cup\{x\},b) = \mathcal{O}(P_T^x\cup\{x\},b_1) + \mathcal{O}(S_T^x,b_2)\\ \mathcal{O}(T,b) = \mathcal{O}(P_T^x,c_1)+\mathcal{O}(S_T^x,c_2)\\ %\intertext{and} \mathcal{O}(T\cup\{y, x\},b) = \mathcal{O}(P_T^x\cup\{x\},b_1) + \mathcal{O}(S_T^x\cup\{y\},b_2)\\ \mathcal{O}(T\cup\{y\},b) = \mathcal{O}(P_T^x,c_1)+\mathcal{O}(S_T^x\cup\{y\},c_2) \end{gather*} with $b_1+b_2=b$, $c_1+c_2=b$ and $b_2\leq c_2$. In this case again: \begin{multline*} \mathcal{O}(T\cup\{x\},b)-\mathcal{O}(T,b)= \mathcal{O}(S_T^x,b_2)-\mathcal{O}(S_T^x,c_2)\\ \geq \mathcal{O}(S_T^x\cup\{y\},b_2)-\mathcal{O}(S_T^x\cup\{y\},c_2)\\ = \mathcal{O}(T\cup\{y, x\},b)-\mathcal{O}(T\cup\{y\},b) \end{multline*} where the inequality uses Lemma~\ref{lemma:nd} and $c_2\geq b_2$. In both cases, we were able to obtain the second-order characterization of submodularity. This concludes the proof of the lemma. \end{proof} \vspace{0.5em} \begin{proof}[of Proposition~\ref{prop:sub}] Let us consider $S$ and $T$ such that $S\subseteq T\subseteq X$ and $x\in X\setminus T$. In particular, note that $\neigh{S}\subseteq\neigh{T}$. Let us write $\neigh{S\cup\{x\}}=\neigh{S}\cup R$ with $\neigh{S}\cap R=\emptyset$ and similarly, $\neigh{T\cup\{x\}}=\neigh{T}\cup R'$ with $\neigh{T}\cap R'=\emptyset$. It is clear that $R'\subseteq R$. Writing $R'=\{u_1,\ldots,u_k\}$: \begin{multline*} \mathcal{O}(\neigh{T\cup\{x\}},b)- \mathcal{O}(\neigh{T},b)\\ =\sum_{i=1}^k\mathcal{O}(\neigh{T}\cup\{u_1,\ldots u_i\},b) -\mathcal{O}(\neigh{T}\cup\{u_1,\ldots u_{i-1}\},b)\\ \leq \sum_{i=1}^k\mathcal{O}(\neigh{S}\cup\{u_1,\ldots u_i\},b) -\mathcal{O}(\neigh{S}\cup\{u_1,\ldots u_{i-1}\},b)\\ =\mathcal{O}(\neigh{S}\cup R',b)-\mathcal{O}(\neigh{S},b) \end{multline*} where the inequality comes from the submodularity of $\mathcal{O}(\cdot,b)$ proved in Lemma~\ref{lemma:sub}. This same function is also obviously set-increasing, hence: \begin{multline*} \mathcal{O}(\neigh{S}\cup R',b)-\mathcal{O}(\neigh{S},b)\\ \leq \mathcal{O}(\neigh{S}\cup R,b)-\mathcal{O}(\neigh{S},b)\\ =\mathcal{O}(\neigh{S\cup\{x\}},b)-\mathcal{O}(\neigh{S},b) \end{multline*} This concludes the proof of the proposition. \end{proof} \begin{proof}[of Proposition~\ref{prop:main_result}] We simply note that the content of the outer \textsf{for} loop on line 2 of Algorithm~\ref{alg:comb} is the greedy submodular maximization algorithm of \cite{nemhauser}. Since $\mathcal{O}(\neigh{\cdot}, t)$ is submodular (Proposition~\ref{prop:sub}), this solves the inner $\max$ in \eqref{eq:sub-mod} with an approximation ratio of $(1-1/e)$. The outer \textsf{for} loop then computes the outer $\max$ of \eqref{eq:sub-mod}. As a consequence, Algorithm~\ref{alg:comb} computes a $(1-1/e)$-approximate non-adaptive solution. We conclude by applying Proposition~\ref{prop:cr}. \end{proof} \subsection{Parallelization} \label{sec:para} As discussed in the body of the paper, the algorithm can be parallelized across $k$ different machines, each one computing an approximation for a fixed budget $k-t$ in the first stage and $t$ in the second. A slightly more sophisticated approach is to consider only $\log n$ splits: $(1,k-1),(2,k-2),\ldots,(2^{\lfloor \log n \rfloor},1)$ and then select the best solution from this set. It is not hard to see that in comparison to the previous approach, this would reduce the approximation guarantee by a factor of at most 2: if the optimal solution is obtained by spending $t$ on the first stage and $k-t$ in the second stage, then since $t \leq 2\cdot2^{\lfloor \log t \rfloor}$ the solution computed for $(2^{\lfloor \log t \rfloor}, k - 2^{\lfloor \log t \rfloor})$ will have at least half that value. More generally, for any $\epsilon>0$ one can parallelize over $\log_{1+\epsilon}n$ machines at the cost of losing a factor of $(1+\epsilon)$ in the approximation guarantee. \subsection{Implementation in MapReduce} \label{sec:mr} As noted in Section~\ref{sec:comb}, lines 4 to 7 of Algorithm~\ref{alg:comb} correspond to the greedy heuristic of \cite{nemhauser} applied to the submodular function $f_t(S) \defeq \mathcal{O}\big(\neigh{S}, t\big)$. A variant of this heuristic, namely the $\varepsilon$-greedy heuristic, combined with the \textsc{Sample\&Prune} method of \cite{mr} allows us to write a MapReduce version of Algorithm~\ref{alg:comb}. The resulting algorithm is described in Algorithm~\ref{alg:combmr} \begin{algorithm} \caption{Combinatorial algorithm, MapReduce} \label{alg:combmr} \algsetup{indent=2em} \begin{algorithmic}[1] \STATE $S\leftarrow \emptyset$ \FOR{$t=1$ \TO $k-1$} \STATE $S_t\leftarrow \emptyset$ \FOR{$i=1$ \TO $\log_{1+\varepsilon}\Delta$} \STATE $U\leftarrow X$, $S'\leftarrow \emptyset$ \WHILE{$|U|>0$} \STATE $R\leftarrow$ sample from $U$ w.p. $\min\left(1, \frac{\ell}{|U|}\right)$ \WHILE{$|R|>0$ \OR $|S_t\cup S'|< k$} \STATE $x\leftarrow$ some element from $R$ \IF{$\nabla f_t(S_t\cup S', x)\geq\frac{\Delta}{(1+\varepsilon)^i}$} \STATE $S'\leftarrow S'\cup\{x\}$ \ENDIF \STATE $R\leftarrow R\setminus\{x\}$ \ENDWHILE \STATE $S_t\leftarrow S_t\cup S'$ \STATE $U\leftarrow\{x\in U\,|\, \nabla f_t(S_t, x)\geq\frac{\Delta}{(1+\varepsilon)^i}\}$ \ENDWHILE \ENDFOR \IF{$\mathcal{O}(\neigh{S_t},t)>\mathcal{O}(\neigh{S},k-|S|)$} \STATE $S\leftarrow S_t$ \ENDIF \ENDFOR \RETURN $S$ \end{algorithmic} \end{algorithm} We denoted by $\nabla f_t(S, x)$ the marginal increment of $x$ to the set $S$ for the function $f_t$, $\nabla f_t(S, x) = f_t(S\cup\{x\}) - f_t(S)$. $\Delta$ is an upper bound on the marginal contribution of any element. In our case, $\Delta = \max_{u\in\neigh{X}} w_u$ provides such an upper bound. The sampling in line 7 selects a small enough number of elements that the \texttt{while} loop from lines 8 to 14 can be executed on a single machine. Furthermore, lines 7 and 16 can be implemented in one round of MapReduce each. The approximation ratio of Algorithm~\ref{alg:combmr} is $1-\frac{1}{e}-\varepsilon$. The proof of this result as well as the optimal choice of $\ell$ follow from Theorem 10 in \cite{mr}.