\subsection{Submodularity of the problem} Let $\mathcal{U} = \{(v_u,c_u);\, u\in\neigh{X}\}$ with $v_u=p_uw_u$ and $c_u=p_u$. Let $b\in\reals^+$ and $A\subseteq\mathcal{U}$, we denote by $\mathcal{O}(A,b)$ the optimal solution to: \begin{displaymath} \begin{split} &\max_{q\in[0,1]^n}\sum_{u\in\neigh{X}}q_uv_u\\ &\text{s.t. }\sum_{u\in\neigh{X}}q_uc_u\leq b\text{ and } q_u=0\text{ if }u\notin A \end{split} \end{displaymath} so that the optimization problem \eqref{eq:relaxed-multi} for relaxed non-adaptive policies can be written: \begin{equation}\label{eq:sub} \begin{split} &\max_{S\subseteq X}\mathcal{O}\big(\neigh{S},k-|S|\big)\\ &\text{s.t. }|S|\leq k \end{split} \end{equation} In this section, we will show how \eqref{eq:sub} can be reduced to a submodular maximization problem, leading to a fast combinatorial algorithm for the adaptive seeding model in the voter model. \begin{lemma}\label{lemma:nd} Let $A\subseteq\mathcal{U}$ and $x=(v,c)\in\mathcal{U}\setminus A$, then the function $b\mapsto \mathcal{O}(A\cup\{x\},b)-\mathcal{O}(A,b)$ is non-decreasing over $\reals^+$. \end{lemma} \begin{proof} \emph{W.l.o.g} we can rename and order the pairs in $A$ so that: \begin{displaymath} \frac{v_1}{c_1}\geq \frac{v_2}{c_2}\geq\ldots\geq\frac{v_m}{c_m}. \end{displaymath} Then, $\mathcal{O}(A,b)$ has the following simple piecewise linear expression: \begin{equation}\label{eq:pw} \mathcal{O}(A,b) = \begin{cases} b\frac{v_1}{c_1}&\text{if }0\leq b t\Big \}$ with $n(t)=+\infty$ when the set is empty. In particular, note that $x\mapsto n(t)$ is non-decreasing. Denoting $\partial_+\mathcal{O}_A$ the right derivative of $\mathcal{O}(A,\cdot)$, one can write $\partial_+\mathcal{O}_A(t) =\frac{v_{n(t)}}{c_{n(t)}}$, with the convention that $\frac{v_\infty}{c_\infty} = 0$. Writing $i \defeq \sup\Big\{j\text{ s.t. } \frac{v_j}{c_j}\geq\frac{v}{c}\Big\}$, it is easy to see that $\partial_+\mathcal{O}_{A\cup\{x\}}\geq\partial_+\mathcal{O}_A$. Indeed: \begin{enumerate} \item if $n(t)\leq i$ then $\partial_+\mathcal{O}_{A\cup\{x\}}(t) = \partial_+\mathcal{O}_A(t)= \frac{v_{n(t)}}{c_{n(t)}}$. \item if $n(t)\geq i+1$ and $n(t-c)\leq i$ then $\partial_+\mathcal{O}_{A\cup\{x\}}(t) = \frac{v}{c}\geq\frac{v_{n(t)}}{c_{n(t)}}= \partial_+\mathcal{O}_A(t)$. \item if $n(t-c)\geq i+1$, then $\partial_+\mathcal{O}_{A\cup\{x\}} = \frac{v_{n(t-c)}}{c_{n(t-c)}}\geq \frac{v_{n(t)}}{c_{n(t)}}=\partial_+\mathcal{O}_A(t)$. \end{enumerate} Let us now consider $b$ and $c$ such that $b\leq c$. Then, using the integral representation of $\mathcal{O}(A\cup\{x\},\cdot)$ and $\mathcal{O}(A,\cdot)$, we get: \begin{multline*} \mathcal{O}(A\cup\{x\},c)-\mathcal{O}(A\cup\{x\},b)=\int_b^c\partial_+\mathcal{O}_{A\cup\{x\}}(t)dt\\ \geq\int_b^c\partial_+\mathcal{O}_A(t)dt=\mathcal{O}(A,c)-\mathcal{O}(A,b) \end{multline*} Re-ordering the terms, $\mathcal{O}(A\cup\{x\},c)-\mathcal{O}(A,c)\geq \mathcal{O}(A\cup\{x\},b)-\mathcal{O}(A,b)$ which concludes the proof of the lemma. \end{proof} \begin{lemma}\label{lemma:sub} Let $b\in\reals^+$, then the function $A\mapsto \mathcal{O}(A,b)$ is submodular. \end{lemma} \begin{proof} Let $A\subseteq\mathcal{U}$ and $x, y\in\mathcal{U}\setminus A$. Using the second-order characterization of submodular functions, it suffices to show that: \begin{equation}\label{eq:so} \mathcal{O}(A\cup\{x\},b)-\mathcal{O}(A,b)\geq \mathcal{O}(A\cup\{y\}\cup\{x\},b)-\mathcal{O}(A\cup\{y\},b) \end{equation} Let us write $x=(v_x, c_x)$ and $y=(v_y,c_y)$. We distinguish two cases based on the relative position of $\frac{v_x}{c_x}$ and $\frac{v_y}{c_y}$. The following notations will be useful: $S_A^x \defeq \big\{(v,c)\in A\text{ s.t. }\frac{v_x}{c_x}\leq\frac{v}{c}\big\}$ and $P_A^x\defeq A\setminus S_A^x$. \textbf{Case 1:} If $\frac{v_y}{c_y}\geq \frac{v_x}{c_x}$, then one can write: \begin{gather*} \mathcal{O}(A\cup\{y\}\cup\{x\},b) = \mathcal{O}(P_A^y\cup\{y\},b_1)+ \mathcal{O}(S_A^y\cup\{x\},b_2)\\ \mathcal{O}(A\cup\{y\},b) = \mathcal{O}(P_A^y\cup\{y\},b_1) + \mathcal{O}(S_A^y,b_2) \end{gather*} where $b_1$ is the fraction of the budget $b$ spent on $P_A^y\cup\{y\}$ and $b_2=b-b_1$. Similarly: \begin{gather*} \mathcal{O}(A\cup\{x\},b) = \mathcal{O}(P_A^y, c_1) + \mathcal{O}(S_A^y\cup\{x\},c_2)\\ \mathcal{O}(A, b) = \mathcal{O}(P_A^y, c_1) + \mathcal{O}(S_A^y,c_2) \end{gather*} where $c_1$ is the fraction of the budget $b$ spent on $P_A^y$ and $c_2 = b - c_1$. Note that $b_1\geq c_1$: an optimal solution will first spent as much budget as possible on $P_A^y\cup\{y\}$ before adding elements in $S_A^y\cup\{x\}$. We can now rewrite \eqref{eq:so}: \begin{displaymath} \mathcal{O}(S_A^y\cup\{x\},c_2)+\mathcal{O}(S_A^y,c_2)\geq \mathcal{O}(S_A^y\cup\{x\},b_2)+\mathcal{O}(S_A^y,b_2) \end{displaymath} with $c_2\geq b_2$. This inequality is true by Lemma~\ref{lemma:nd}. \textbf{Case 2:} If $\frac{v_x}{c_x}\geq \frac{v_y}{c_y}$, we now decompose the solution on $P_A^x$ and $S_A^x$: \begin{gather*} \mathcal{O}(A\cup\{x\},b) = \mathcal{O}(P_A^x\cup\{x\},b_1) + \mathcal{O}(S_A^x,b_2)\\ \mathcal{O}(A,b) = \mathcal{O}(P_A^x,c_1)+\mathcal{O}(S_A^x,c_2) \intertext{and} \mathcal{O}(A\cup\{y\}\cup\{x\},b) = \mathcal{O}(P_A^x\cup\{x\},b_1) + \mathcal{O}(S_A^x\cup\{y\},b_2)\\ \mathcal{O}(A\cup\{y\},b) = \mathcal{O}(P_A^x,c_1)+\mathcal{O}(S_A^x\cup\{y\},c_2) \end{gather*} with $b_1+b_2=b$, $c_1+c_2=b$ and $b_2\leq c_2$. The equation \eqref{eq:so} can be rewritten: \begin{displaymath} \mathcal{O}(S_A^x,b_2)-\mathcal{O}(S_A^x,c_2)\geq \mathcal{O}(S_A^x\cup\{u\},b_2)-\mathcal{O}(S_A^x\cup\{y\},c_2) \end{displaymath} Reordering the terms, we get: \begin{displaymath} \mathcal{O}(S_A^x\cup\{y\},c_2) -\mathcal{O}(S_A^x,c_2)\geq \mathcal{O}(S_A^x\cup\{u\},b_2)-\mathcal{O}(S_A^x,b_2) \end{displaymath} with $c_2\geq b_2$. This is again true by Lemma~\ref{lemma:nd}. \end{proof} \begin{proposition}\label{prop:sub} Let $b\in\mathbf{R}^+$, then the function $S\mapsto\mathcal{O}(\neigh{S},b)$ is submodular over $2^X$. \end{proposition} \begin{proof} Let us consider $S$ and $T$ such that $S\subseteq T\subseteq X$ and $x\in X\setminus T$. In particular, note that $\neigh{S}\subseteq\neigh{T}$. Let us write $\neigh{S\cup\{x\}}=\neigh{S}\cup R$ with $\neigh{S}\cap R=\emptyset$ and similarly, $\neigh{T\cup\{x\}}=\neigh{T}\cup R'$ with $\neigh{T}\cap R'=\emptyset$. Using these notations, it is clear that $R'\subseteq R$. Let us enumerate the elements in $R'$ using an arbitrary order: $R'=\{u_1,\ldots,u_k\}$. Then one can write: \begin{displaymath} \begin{split} \mathcal{O}(\neigh{T\cup\{x\}},b)&=\mathcal{O}(\neigh{T}\cup R',b)\\ &=\sum_{i=1}^k\mathcal{O}(\neigh{T}\cup\{u_1,\ldots u_i\},b) -\mathcal{O}(\neigh{T}\cup\{u_1,\ldots u_{i-1}\},b)\\ &\leq \sum_{i=1}^k\mathcal{O}(\neigh{S}\cup\{u_1,\ldots u_i\},b) -\mathcal{O}(\neigh{S}\cup\{u_1,\ldots u_{i-1}\},b)\\ &=\mathcal{O}(\neigh{S}\cup R',b)-\mathcal{O}(\neigh{S},b) \end{split} \end{displaymath} where the inequality comes from the submodularity of $A\mapsto\mathcal{O}(A,b)$ proved in Lemma~\ref{lemma:sub}. This same function is also obviously set-increasing, hence: \begin{displaymath} \begin{split} \mathcal{O}(\neigh{S}\cup R',b)-\mathcal{O}(\neigh{S},b) &\leq \mathcal{O}(\neigh{S}\cup R,b)-\mathcal{O}(\neigh{S},b)\\ &=\mathcal{O}(\neigh{S\cup\{x\}},b)-\mathcal{O}(\neigh{S},b) \end{split} \end{displaymath} This concludes the proof of the proposition. \end{proof} Using Proposition~\ref{prop:sub}, we can finally reduce \eqref{eq:sub} to a submodular optimization problem by treating $|S|$ as a variable to optimize. Specifically, \eqref{eq:sub} is equivalent to the following problem: \begin{equation}\label{eq:sub2} \begin{split} \max_{1\leq t\leq k}\max_{|S|\leq k-t}\mathcal{O}(\neigh{S},t) \end{split} \end{equation} \begin{algorithm} \caption{Combinatorial algorithm} \label{alg:comb} \algsetup{indent=2em} \begin{algorithmic}[1] \STATE $S\leftarrow \emptyset$ \FOR{$t=1$ \TO $k-1$} \STATE $S_t\leftarrow \emptyset$ \FOR{$i=1$ \TO $k-t$} \STATE $x^*\leftarrow\argmax_{x\in X\setminus S_t}\mathcal{O}(\neigh{S_t\cup\{x\}},t) -\mathcal{O}(\neigh{S_t},t)$\label{line:argmax} \STATE $S_t\leftarrow S_t\cup\{x^*\}$ \ENDFOR \IF{$\mathcal{O}(\neigh{S_t},t)>\mathcal{O}(\neigh{S},k-|S|)$} \STATE $S\leftarrow S_t$ \ENDIF \ENDFOR \RETURN $S$ \end{algorithmic} \end{algorithm} \begin{proposition} Let $S$ be the set computed by Algorithm~\ref{alg:comb} and let us denote by $A(S)$ the value of the adaptive policy which selects $S$ on the first day. Then: \begin{displaymath} A(S) \geq \frac{1}{2}\left(1-\frac{1}{e}\right)OPT. \end{displaymath} Furthermore, Algorithm~\ref{alg:comb} runs in time $O\left(n\log n+k^2m\min(\frac{k}{p_\text{min}},n)\right)$, where $m=|X|$, $n=|\neigh{X}|$ and $p_\text{min} =\min\{p_u,u\in\neigh{X}\}$. \end{proposition} \begin{proof} For each realization of the neighbors $R$, let us define by $X_R$ the random set which includes each $u\in R$ with probability $q_u$ on the second day and: \begin{displaymath} \tilde{X}_R= \begin{cases} X_R&\text{if } |X_R|\leq t\\ \emptyset&\text{otherwise} \end{cases} \end{displaymath} where $t = k-|S|$. $\tilde{X}_R$ is a random variable over the feasible solutions on the second day. As a consequence: \begin{displaymath} A(S) \geq \sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big] \end{displaymath} Let us define by $Y$ the random set which includes each $u\in\neigh{X}$ with probability $p_uq_u$ and: \begin{displaymath} \tilde{Y}= \begin{cases} Y&\text{if } |Y|\leq t\\ \emptyset&\text{otherwise} \end{cases}. \end{displaymath} It is easy to see that $\tilde{X}_R$ is the conditional expectation of $\tilde{Y}$ given $R$. Hence: \begin{displaymath} \sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big] = \mathbb{E}\big[f(\tilde{Y})\big] \end{displaymath} But: \begin{align*} \mathbb{E}\big[f(\tilde{Y})\big] &=\sum_{T\subseteq\neigh{X}}\mathbb{P}\big[\tilde{Y}=T\big]f(T) = \sum_{\substack{T\subseteq\neigh{X}\\|T|\leq t}}\mathbb{P}\big[Y=T\big]f(T)\\ &= \mathbb{E}\big[f(Y)\big]-\sum_{\substack{T\subseteq\neigh{X}\\|T|> t}}\mathbb{P}\big[Y=T\big]f(T) \end{align*} Roughly: \begin{displaymath} \sum_{\substack{T\subseteq\neigh{X}\\|T|> t}}\mathbb{P}\big[Y=T\big]f(T)\leq \frac{1}{2}\mathbb{E}\big[f(Y)\big] \end{displaymath} Combining the above inequalities we get: \begin{displaymath} A(S)\geq \frac{1}{2} \mathbb{E}\big[f(Y)\big] \end{displaymath} But $\mathbb{E}\big[f(Y)\big]$ is precisely the value of the non-adaptive solution computed by Algorithm~\ref{alg:comb} which is a $\left(1-\frac{1}{e}\right)$ approximation of the optimal non adaptive solution. Hence: \begin{displaymath} A(S) \geq \frac{1}{2}\left(1-\frac{1}{e}\right) OPT_{NA} \end{displaymath} Finally, we conclude with Proposition~\ref{prop:gap} \end{proof} \subsection{From expectation to high probability} \subsection{Questions} \begin{itemize} \item Can it be parallelized (map-reduce)? \end{itemize}