summaryrefslogtreecommitdiffstats
path: root/data/combined/graphs/plots.py
diff options
context:
space:
mode:
authorJon Whiteaker <jbw@berkeley.edu>2012-03-04 00:51:57 -0800
committerJon Whiteaker <jbw@berkeley.edu>2012-03-04 00:51:57 -0800
commit2fa61c47c9e93fdc4c4908dd9ee6e7885430e73b (patch)
tree6b9e5227747b42e96b7d6e71b84cd965420bbc53 /data/combined/graphs/plots.py
parent88a0dc3805499ba780d753ba6f138562a5217a26 (diff)
downloadkinect-2fa61c47c9e93fdc4c4908dd9ee6e7885430e73b.tar.gz
brano's comments
Diffstat (limited to 'data/combined/graphs/plots.py')
-rwxr-xr-xdata/combined/graphs/plots.py35
1 files changed, 24 insertions, 11 deletions
diff --git a/data/combined/graphs/plots.py b/data/combined/graphs/plots.py
index 5fd3c2c..7b3bb3e 100755
--- a/data/combined/graphs/plots.py
+++ b/data/combined/graphs/plots.py
@@ -20,34 +20,45 @@ l = ["3","5","10","all"]
#10-fold, naive
plt.cla()
-ax = plt.subplot(121)
+#ax = plt.subplot(121)
plt.axis([0,100,50,100])
-ax.set_aspect(2)
+#ax.set_aspect(2)
for i in l:
x,y = np.loadtxt(i+"_nb_off.mat",unpack=True)
- plt.plot(100*x,100*y,label="$n=$ "+i,linewidth=0.8)
+ plt.plot(100*x,100*y,label="$n_p=$ "+i,linewidth=0.8)
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
plt.legend(loc="best")
+plt.savefig("offline-nb.pdf")
#10-fold, SHT
-ax = plt.subplot(122)
-plt.axis([0,100,50,100])
-ax.set_aspect(2)
+#ax = plt.subplot(122)
+#plt.axis([0,100,50,100])
+#ax.set_aspect(2)
+plt.cla()
for i in l:
x,y = np.loadtxt(i+"_sht_off.mat",unpack=True)
- plt.plot(100*x,100*y,label="$n=$ "+i,linewidth=0.8)
+ plt.plot(100*x,100*y,label="$n_p=$ "+i,linewidth=0.8)
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
plt.legend(loc="best")
plt.axis([0,100,50,100])
-plt.savefig("10fold.pdf")
+plt.savefig("offline-sht.pdf")
+#online,NB
+plt.cla()
+for i in l:
+ x,y = np.loadtxt(i+"_nb_on.mat",unpack=True)
+ plt.plot(100*x,100*y,label="$n_p=$ "+i,linewidth=0.8,markersize=4)
+ plt.xlabel("Recall [%]")
+ plt.ylabel("Precision [%]")
+ plt.legend(loc="best")
+plt.savefig("online-nb.pdf")
#online,SHT
plt.cla()
for i in l:
x,y = np.loadtxt(i+"_sht_on.mat",unpack=True)
- plt.plot(100*x,100*y,label="$n=$ "+i,linewidth=0.8,markersize=4)
+ plt.plot(100*x,100*y,label="$n_p=$ "+i,linewidth=0.8,markersize=4)
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
plt.legend(loc="best")
@@ -69,8 +80,10 @@ plt.savefig("face.pdf")
plt.cla()
x,y = np.loadtxt("back_all_sht_on.mat",unpack=True)
a,b = np.loadtxt("all_sht_on.mat",unpack=True)
-plt.plot(100*x,100*y,linewidth=0.8,label="Away")
-plt.plot(100*a,100*b,linewidth=0.8,label="Toward")
+c,d = np.loadtxt("front_back_all_sht.mat",unpack=True)
+plt.plot(100*a,100*b,linewidth=0.8,label="Train/test toward")
+plt.plot(100*x,100*y,linewidth=0.8,label="Train/test away")
+plt.plot(100*c,100*d,linewidth=0.8,label="Train toward test away")
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
plt.legend(loc="best")