summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--algorithm.tex6
-rw-r--r--experimental.tex52
-rw-r--r--kinect.tex10
-rw-r--r--uniqueness.tex2
4 files changed, 33 insertions, 37 deletions
diff --git a/algorithm.tex b/algorithm.tex
index 3045929..c02a0e5 100644
--- a/algorithm.tex
+++ b/algorithm.tex
@@ -55,15 +55,15 @@ This suggests that all class conditionals $P(\bx | y)$ are multivariate normal
and our generative model, although very simple, may be nearly optimal
\cite{bishop06pattern}.
-\begin{figure}[t]
+\begin{figure*}[t]
\centering
- \includegraphics{graphics/limbs.pdf}
+ \includegraphics[width=0.99\textwidth]{graphics/limbs.pdf}
\caption{Histograms of differences between 9 skeleton measurements
$x_k$ (Section~\ref{sec:experiment}) and their expectation given the
class $y$. In red, the p.d.f. of a normal distribution with mean and
variance equal to the empirical mean and variance of the measurement}
\label{fig:error marginals}
-\end{figure}
+\end{figure*}
\subsection{Sequential hypothesis testing}
diff --git a/experimental.tex b/experimental.tex
index 07fd74b..90609da 100644
--- a/experimental.tex
+++ b/experimental.tex
@@ -49,7 +49,7 @@ detected figures, and the fitted skeleton of a person in a single frame. Skelet
fit from roughly 1-5 meters away from the Kinect. For each frame with a
skeleton we record the color image and the positions of the joints.
-\begin{figure}[t]
+\begin{figure*}[t]
\begin{center}
\includegraphics[width=0.99\textwidth]{graphics/hallway.png}
\end{center}
@@ -57,7 +57,7 @@ skeleton we record the color image and the positions of the joints.
\caption{Experiment setting. Color image, depth image, and fitted
skeleton as captured by the Kinect in a single frame}
\label{fig:hallway}
-\end{figure}
+\end{figure*}
For some frames, one or several joints are out of the frame or are occluded by
another part of the body. In those cases, the coordinates of these joints are
@@ -87,7 +87,8 @@ pairs of joints:
%Shoulder-Elbow, Elbow-Wrist, ShoulderCenter-Spine, Spine-HipCenter,
%HipCenter-HipSide, HipSide-Knee, Knee-Ankle.
-\begin{table}
+\vspace{\baselineskip}
+\begin{table}[!h]
\begin{center}
\vspace{-1.5\baselineskip}
\begin{tabular}{lll}
@@ -98,6 +99,7 @@ Shoulder-Elbow & Spine-HipCenter & Knee-Ankle\\
\vspace{-2.5\baselineskip}
\end{center}
\end{table}
+\vspace{1.5\baselineskip}
Each detected skeleton also has an ID number obtained from the figure detection
stage. When there are consecutive frames with the same ID, it means that figure
@@ -142,7 +144,7 @@ happens if the noise from the Kinect is reduced.
\begin{figure}[t]
\begin{center}
- \includegraphics[]{graphics/frames.pdf}
+ \includegraphics[width=0.49\textwidth]{graphics/frames.pdf}
\end{center}
\vspace{-1.5\baselineskip}
\caption{Distribution of the frequency of each individual in the
@@ -190,11 +192,11 @@ we reach 90\% accuracy at 60\% recall for a group size of 10 people.
\begin{figure*}[t]
\begin{center}
\subfloat[Mixture of Gaussians]{
- \includegraphics[]{graphics/offline-nb.pdf}
+ \includegraphics[width=0.49\textwidth]{graphics/offline-nb.pdf}
\label{fig:offline:nb}
}
\subfloat[Sequential Hypothesis Testing]{
- \includegraphics[]{graphics/offline-sht.pdf}
+ \includegraphics[width=0.49\textwidth]{graphics/offline-sht.pdf}
\label{fig:offline:sht}
}
\caption{Results with 10-fold cross-validation for the top $n_p$ most present people}
@@ -246,30 +248,22 @@ recognition rates mostly above 90\% for group sizes of 3 and 5.
% \label{fig:online:nb}
%}
%\subfloat[Sequential hypothesis testing]{
-\parbox[t]{0.49\linewidth}{
\begin{center}
\includegraphics[width=0.49\textwidth]{graphics/online-sht.pdf}
\end{center}
-}
-\parbox[t]{0.49\linewidth}{
- \begin{center}
- \includegraphics[width=0.49\textwidth]{graphics/face.pdf}
- \end{center}
-}
-\end{figure}
-\begin{figure}
\vspace{-1.5\baselineskip}
-\parbox[t]{0.48\linewidth}{
\caption{Results for the online setting, where $n_p$ is the size of
the group as in Figure~\ref{fig:offline}}
\label{fig:online}
-}
-\hspace{0.02\linewidth}
-\parbox[t]{0.48\linewidth}{
+\end{figure}
+\begin{figure}[t]
+ \begin{center}
+ \includegraphics[width=0.49\textwidth]{graphics/face.pdf}
+ \end{center}
+\vspace{-1.5\baselineskip}
\caption{Results for face recognition versus skeleton recognition
with $n_p=5$ people}
\label{fig:face}
-}
\end{figure}
\subsection{Face recognition}
@@ -300,28 +294,20 @@ less than 10\% at most thresholds.
\begin{figure}[t]
-\parbox[t]{0.49\linewidth}{
\begin{center}
\includegraphics[width=0.49\textwidth]{graphics/back.pdf}
\end{center}
-}
-\parbox[t]{0.49\linewidth}{
+\vspace{-1.5\baselineskip}
+\caption{Results with people walking away from and toward the camera}
+\label{fig:back}
+\end{figure}
+\begin{figure}[t]
\begin{center}
\includegraphics[width=0.49\textwidth]{graphics/var.pdf}
\end{center}
-}
-\end{figure}
-\begin{figure}
\vspace{-1.5\baselineskip}
-\parbox[t]{0.48\linewidth}{
-\caption{Results with people walking away from and toward the camera}
-\label{fig:back}
-}
-\hspace{0.02\linewidth}
-\parbox[t]{0.48\linewidth}{
\caption{Results with and without halving the variance of the noise}
\label{fig:var}
-}
\end{figure}
\subsection{Walking away}
diff --git a/kinect.tex b/kinect.tex
index 8993a0f..f684205 100644
--- a/kinect.tex
+++ b/kinect.tex
@@ -64,6 +64,16 @@
% \author{Anonymous ECCV submission}
% \institute{Paper ID \ECCV12SubNumber}
+\author{ \parbox{2 in}{\centering Jon Whiteaker\\
+ {\tt\small jbw@berkeley.edu}}
+ \parbox{2 in}{ \centering Thibaut Horel\\
+ {\tt\small thibaut.horel@ens.fr}}
+ \parbox{2 in}{ \centering Branislav Kveton\\
+ {\tt\small branislav.kveton@technicolor.com}}
+\\\\
+\centering\small Technicolor, Palo Alto, CA 94301, USA
+}
+
\maketitle
diff --git a/uniqueness.tex b/uniqueness.tex
index 1814446..3d91dc8 100644
--- a/uniqueness.tex
+++ b/uniqueness.tex
@@ -68,7 +68,7 @@ output of the algorithm for the threshold $\delta$ is defined as:
\begin{figure}[t]
\begin{center}
- \includegraphics[]{graphics/roc.pdf}
+ \includegraphics[width=0.49\textwidth]{graphics/roc.pdf}
\end{center}
\vspace{-1.5\baselineskip}
\caption{ROC curve for several standard deviations of the noise and