summaryrefslogtreecommitdiffstats
path: root/data
diff options
context:
space:
mode:
Diffstat (limited to 'data')
-rwxr-xr-xdata/face-run-recognition-accuracy.py2
-rwxr-xr-xdata/nn-goldman.py26
2 files changed, 19 insertions, 9 deletions
diff --git a/data/face-run-recognition-accuracy.py b/data/face-run-recognition-accuracy.py
index 4d0fc03..7d39b41 100755
--- a/data/face-run-recognition-accuracy.py
+++ b/data/face-run-recognition-accuracy.py
@@ -18,7 +18,7 @@ for line in open(sys.argv[1]):
user = line[1]
if run not in runs:
runs[run] = 0
- labels[run] = users.index(user) + 1
+ labels[run] = int(user) #users.index(user) + 1
for line in open(sys.argv[2]):
line = line.split(',')
diff --git a/data/nn-goldman.py b/data/nn-goldman.py
index 297544b..34072de 100755
--- a/data/nn-goldman.py
+++ b/data/nn-goldman.py
@@ -3,13 +3,19 @@ import sys
import numpy as np
#in place modification !
-def normalize(a):
- print a
- for i in range(a.shape[1]):
+def normalize(a,weights=None):
+ if weights == None:
+ weights= {}
+ cols = a.shape[1]
+ for i in range(cols):
+ weights[i] = None
+
+ for i in weights.keys():
column = a[:,i]
- weights = np.mean(column), np.std(column)
- a[:,i] = (column-weights[0])/weights[1]
- return a
+ if weights[i] == None:
+ weights[i] = np.mean(column), np.std(column)
+ a[:,i] = (column-weights[i][0])/weights[i][1]
+ return a,weights
def knn_search(names,d1,d2,k):
for i,row2 in enumerate(d2):
@@ -29,7 +35,11 @@ if __name__ == "__main__":
sk_data = sk_data[:,1:]
noise1 = np.random.normal(0,var,sk_data.shape)
noise2 = np.random.normal(0,var,sk_data.shape)
- sk1 = normalize(sk_data+noise1)
- sk2 = normalize(sk_data+noise2)
+ #sk1,weights = normalize(sk_data+noise1)
+ #sk2,weights = normalize(sk_data+noise2,weights)
+ sk1 = sk_data + noise1
+ sk2 = sk_data + noise2
+ print sk1
+ print sk2
knn_search(names,sk1,sk2,1)