From bd894794b31290499656e67eb0c81bbed4bcbf56 Mon Sep 17 00:00:00 2001 From: Jon Whiteaker Date: Wed, 22 Aug 2012 01:08:00 -0700 Subject: fixed graphics to fit new format --- data/combined/graphs/plots.py | 32 ++++++++++++++++---------------- experimental.tex | 6 ------ graphics/back.pdf | Bin 15777 -> 15927 bytes graphics/face.pdf | Bin 12959 -> 13656 bytes graphics/frames.pdf | Bin 10951 -> 10976 bytes graphics/limbs.pdf | Bin 50499 -> 48037 bytes graphics/offline-nb.pdf | Bin 19347 -> 20633 bytes graphics/offline-sht.pdf | Bin 18670 -> 20153 bytes graphics/online-nb.pdf | Bin 17702 -> 17651 bytes graphics/online-sht.pdf | Bin 20647 -> 23396 bytes graphics/var.pdf | Bin 15027 -> 15326 bytes uniqueness.tex | 1 - 12 files changed, 16 insertions(+), 23 deletions(-) diff --git a/data/combined/graphs/plots.py b/data/combined/graphs/plots.py index 8e855da..7b3940e 100755 --- a/data/combined/graphs/plots.py +++ b/data/combined/graphs/plots.py @@ -20,7 +20,7 @@ legend_width = 0.2 out_dir = sys.argv[1] #limbs distribution -plt.figure(figsize=(5.6,1.7)) +plt.figure(figsize=(6,1.8)) data = np.loadtxt("../limbs-avg-zdiff/data.csv",delimiter=",") data = data[#(data[:,1] == 25) ((data != -1).all(1)) @@ -40,7 +40,7 @@ for i in range(len(mean)): plt.savefig(os.path.join(out_dir,"limbs.pdf"),bbox_inches="tight",pad_inches=0.05) #frames distribution -plt.figure(figsize=(4.5,2)) +plt.figure(figsize=(3,1.3)) x = np.loadtxt("frames.txt",usecols=(0,)) y = range(1,len(x)+1) width=0.8 @@ -55,7 +55,7 @@ plt.savefig(os.path.join(out_dir,"frames.pdf"),bbox_inches="tight",pad_inches=0. l = ["3","5","10","all"] #10-fold, naive -plt.figure() +plt.figure(figsize=(3,2.2)) for i in l: x,y = np.loadtxt(i+"_nb_off.mat",unpack=True) plt.plot(100*x,100*y,label="$n_p=$ "+i) @@ -64,11 +64,11 @@ plt.ylabel("Precision [%]") leg =plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"offline-nb.pdf"),bbox_inches="tight",pad_inches=0.05) #10-fold, SHT -plt.figure() +plt.figure(figsize=(3,2.2)) for i in l: x,y = np.loadtxt(i+"_sht_off.mat",unpack=True) plt.plot(100*x,100*y,label="$n_p=$ "+i) @@ -77,11 +77,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="lower left") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"offline-sht.pdf"),bbox_inches="tight",pad_inches=0.05) #online,NB -plt.figure() +plt.figure(figsize=(3,2.2)) for i in l: x,y = np.loadtxt(i+"_nb_on.mat",unpack=True) plt.plot(100*x,100*y,label="$n_p=$ "+i) @@ -90,11 +90,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(2) +#plt.gca().set_aspect(2) plt.savefig(os.path.join(out_dir,"online-nb.pdf"),bbox_inches="tight",pad_inches=0.05) #online,SHT -plt.figure() +plt.figure(figsize=(3,2.2)) for i in l: x,y = np.loadtxt(i+"_sht_on.mat",unpack=True) plt.plot(100*x,100*y,label="$n_p=$ "+i) @@ -103,11 +103,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"online-sht.pdf"),bbox_inches="tight",pad_inches=0.05) #face -plt.figure() +plt.figure(figsize=(3,2.2)) x,y = np.loadtxt("5_nb_split.mat",unpack=True) a,b = np.loadtxt("face.csv",delimiter=",", unpack=True) plt.plot(100*x,100*y,label="Skeleton") @@ -117,11 +117,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"face.pdf"),bbox_inches="tight",pad_inches=0.05) #back -plt.figure() +plt.figure(figsize=(3,2.2)) x,y = np.loadtxt("back_all_sht_on.mat",unpack=True) a,b = np.loadtxt("all_sht_off.mat",unpack=True) c,d = np.loadtxt("front_back_all_sht.mat",unpack=True) @@ -133,11 +133,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"back.pdf"),bbox_inches="tight",pad_inches=0.05) #variance-reduction -plt.figure() +plt.figure(figsize=(3,2.2)) x,y = np.loadtxt("half-var-all_sht_on.mat",unpack=True) a,b = np.loadtxt("all_sht_on.mat",unpack=True) plt.plot(100*x,100*y,label="Reduced noise") @@ -147,5 +147,5 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"var.pdf"),bbox_inches="tight",pad_inches=0.05) diff --git a/experimental.tex b/experimental.tex index fde1395..f59be72 100644 --- a/experimental.tex +++ b/experimental.tex @@ -146,7 +146,6 @@ happens if the noise from the Kinect is reduced. \begin{center} \includegraphics[width=0.49\textwidth]{graphics/frames.pdf} \end{center} - \vspace{-1.5\baselineskip} \caption{Distribution of the frequency of each individual in the dataset} \label{fig:frames} @@ -202,7 +201,6 @@ we reach 90\% accuracy at 60\% recall for a group size of 10 people. \caption{Results with 10-fold cross-validation for the top $n_p$ most present people} \label{fig:offline} \end{center} - \vspace{-1.5\baselineskip} \end{figure*} %\begin{figure}[t] @@ -251,7 +249,6 @@ recognition rates mostly above 90\% for group sizes of 3 and 5. \begin{center} \includegraphics[width=0.49\textwidth]{graphics/online-sht.pdf} \end{center} -\vspace{-1.5\baselineskip} \caption{Results for the online setting, where $n_p$ is the size of the group as in Figure~\ref{fig:offline}} \label{fig:online} @@ -260,7 +257,6 @@ recognition rates mostly above 90\% for group sizes of 3 and 5. \begin{center} \includegraphics[width=0.49\textwidth]{graphics/face.pdf} \end{center} -\vspace{-1.5\baselineskip} \caption{Results for face recognition versus skeleton recognition with $n_p=5$ people} \label{fig:face} @@ -297,7 +293,6 @@ less than 10\% at most thresholds. \begin{center} \includegraphics[width=0.49\textwidth]{graphics/back.pdf} \end{center} -\vspace{-1.5\baselineskip} \caption{Results with people walking away from and toward the camera} \label{fig:back} \end{figure} @@ -305,7 +300,6 @@ less than 10\% at most thresholds. \begin{center} \includegraphics[width=0.49\textwidth]{graphics/var.pdf} \end{center} -\vspace{-1.5\baselineskip} \caption{Results with and without halving the variance of the noise} \label{fig:var} \end{figure} diff --git a/graphics/back.pdf b/graphics/back.pdf index ec3345e..6086ad3 100644 Binary files a/graphics/back.pdf and b/graphics/back.pdf differ diff --git a/graphics/face.pdf b/graphics/face.pdf index 58f50b8..02162b4 100644 Binary files a/graphics/face.pdf and b/graphics/face.pdf differ diff --git a/graphics/frames.pdf b/graphics/frames.pdf index d5e2166..6b95abd 100644 Binary files a/graphics/frames.pdf and b/graphics/frames.pdf differ diff --git a/graphics/limbs.pdf b/graphics/limbs.pdf index 0bbaad5..c3c023b 100644 Binary files a/graphics/limbs.pdf and b/graphics/limbs.pdf differ diff --git a/graphics/offline-nb.pdf b/graphics/offline-nb.pdf index 7b22078..78283c9 100644 Binary files a/graphics/offline-nb.pdf and b/graphics/offline-nb.pdf differ diff --git a/graphics/offline-sht.pdf b/graphics/offline-sht.pdf index 5be8762..42e461f 100644 Binary files a/graphics/offline-sht.pdf and b/graphics/offline-sht.pdf differ diff --git a/graphics/online-nb.pdf b/graphics/online-nb.pdf index ec06cdc..3b59692 100644 Binary files a/graphics/online-nb.pdf and b/graphics/online-nb.pdf differ diff --git a/graphics/online-sht.pdf b/graphics/online-sht.pdf index c8f7554..0034cca 100644 Binary files a/graphics/online-sht.pdf and b/graphics/online-sht.pdf differ diff --git a/graphics/var.pdf b/graphics/var.pdf index 2983361..f4f75e2 100644 Binary files a/graphics/var.pdf and b/graphics/var.pdf differ diff --git a/uniqueness.tex b/uniqueness.tex index 3d91dc8..ca89e85 100644 --- a/uniqueness.tex +++ b/uniqueness.tex @@ -70,7 +70,6 @@ output of the algorithm for the threshold $\delta$ is defined as: \begin{center} \includegraphics[width=0.49\textwidth]{graphics/roc.pdf} \end{center} - \vspace{-1.5\baselineskip} \caption{ROC curve for several standard deviations of the noise and for the state-of-the-art \emph{Associate-Predict} face detection algorithm. The standard deviation $\sigma$ is shown in millimeters} -- cgit v1.2.3-70-g09d2