From bd894794b31290499656e67eb0c81bbed4bcbf56 Mon Sep 17 00:00:00 2001 From: Jon Whiteaker Date: Wed, 22 Aug 2012 01:08:00 -0700 Subject: fixed graphics to fit new format --- data/combined/graphs/plots.py | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) (limited to 'data/combined/graphs/plots.py') diff --git a/data/combined/graphs/plots.py b/data/combined/graphs/plots.py index 8e855da..7b3940e 100755 --- a/data/combined/graphs/plots.py +++ b/data/combined/graphs/plots.py @@ -20,7 +20,7 @@ legend_width = 0.2 out_dir = sys.argv[1] #limbs distribution -plt.figure(figsize=(5.6,1.7)) +plt.figure(figsize=(6,1.8)) data = np.loadtxt("../limbs-avg-zdiff/data.csv",delimiter=",") data = data[#(data[:,1] == 25) ((data != -1).all(1)) @@ -40,7 +40,7 @@ for i in range(len(mean)): plt.savefig(os.path.join(out_dir,"limbs.pdf"),bbox_inches="tight",pad_inches=0.05) #frames distribution -plt.figure(figsize=(4.5,2)) +plt.figure(figsize=(3,1.3)) x = np.loadtxt("frames.txt",usecols=(0,)) y = range(1,len(x)+1) width=0.8 @@ -55,7 +55,7 @@ plt.savefig(os.path.join(out_dir,"frames.pdf"),bbox_inches="tight",pad_inches=0. l = ["3","5","10","all"] #10-fold, naive -plt.figure() +plt.figure(figsize=(3,2.2)) for i in l: x,y = np.loadtxt(i+"_nb_off.mat",unpack=True) plt.plot(100*x,100*y,label="$n_p=$ "+i) @@ -64,11 +64,11 @@ plt.ylabel("Precision [%]") leg =plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"offline-nb.pdf"),bbox_inches="tight",pad_inches=0.05) #10-fold, SHT -plt.figure() +plt.figure(figsize=(3,2.2)) for i in l: x,y = np.loadtxt(i+"_sht_off.mat",unpack=True) plt.plot(100*x,100*y,label="$n_p=$ "+i) @@ -77,11 +77,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="lower left") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"offline-sht.pdf"),bbox_inches="tight",pad_inches=0.05) #online,NB -plt.figure() +plt.figure(figsize=(3,2.2)) for i in l: x,y = np.loadtxt(i+"_nb_on.mat",unpack=True) plt.plot(100*x,100*y,label="$n_p=$ "+i) @@ -90,11 +90,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(2) +#plt.gca().set_aspect(2) plt.savefig(os.path.join(out_dir,"online-nb.pdf"),bbox_inches="tight",pad_inches=0.05) #online,SHT -plt.figure() +plt.figure(figsize=(3,2.2)) for i in l: x,y = np.loadtxt(i+"_sht_on.mat",unpack=True) plt.plot(100*x,100*y,label="$n_p=$ "+i) @@ -103,11 +103,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"online-sht.pdf"),bbox_inches="tight",pad_inches=0.05) #face -plt.figure() +plt.figure(figsize=(3,2.2)) x,y = np.loadtxt("5_nb_split.mat",unpack=True) a,b = np.loadtxt("face.csv",delimiter=",", unpack=True) plt.plot(100*x,100*y,label="Skeleton") @@ -117,11 +117,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"face.pdf"),bbox_inches="tight",pad_inches=0.05) #back -plt.figure() +plt.figure(figsize=(3,2.2)) x,y = np.loadtxt("back_all_sht_on.mat",unpack=True) a,b = np.loadtxt("all_sht_off.mat",unpack=True) c,d = np.loadtxt("front_back_all_sht.mat",unpack=True) @@ -133,11 +133,11 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"back.pdf"),bbox_inches="tight",pad_inches=0.05) #variance-reduction -plt.figure() +plt.figure(figsize=(3,2.2)) x,y = np.loadtxt("half-var-all_sht_on.mat",unpack=True) a,b = np.loadtxt("all_sht_on.mat",unpack=True) plt.plot(100*x,100*y,label="Reduced noise") @@ -147,5 +147,5 @@ plt.ylabel("Precision [%]") leg = plt.legend(loc="best") leg.get_frame().set_linewidth(legend_width) plt.axis([20,100,50,100]) -plt.gca().set_aspect(8./5) +#plt.gca().set_aspect(8./5) plt.savefig(os.path.join(out_dir,"var.pdf"),bbox_inches="tight",pad_inches=0.05) -- cgit v1.2.3-70-g09d2