From 19bb0ff0935f8adc4b63ffd8e8aa58706bdcf7a2 Mon Sep 17 00:00:00 2001 From: Jon Whiteaker Date: Mon, 5 Mar 2012 09:11:56 -0800 Subject: fixed some of the graphs --- data/combined/scriptSkeletonFixedSplit.m | 130 +++++++++++++++++++++++++++++++ 1 file changed, 130 insertions(+) create mode 100644 data/combined/scriptSkeletonFixedSplit.m (limited to 'data/combined/scriptSkeletonFixedSplit.m') diff --git a/data/combined/scriptSkeletonFixedSplit.m b/data/combined/scriptSkeletonFixedSplit.m new file mode 100644 index 0000000..9430dc8 --- /dev/null +++ b/data/combined/scriptSkeletonFixedSplit.m @@ -0,0 +1,130 @@ + +mostFreqClasses = 100; +numEx = 1; +scenario = 'off'; +solver = argv(){3}; + +% load data +trainD = dlmread(argv(){1}, ',', 1, 0); +testD = dlmread(argv(){2}, ',', 1, 0); +D = [trainD; testD]; +X = D(:, 6 : end); +y = D(:, 2); +session = D(:, 2); +z = D(:, 5); + +% remove missing values and outliers +active = all(X ~= -1, 2); +active = active & (z > 2) & (z < 3); + +% remove least frequent classes +tab = tabulate(y); +[nil, delc] = sort(tab(:, 2), 'descend'); +delc = delc(mostFreqClasses + 1 : end); +for c = delc' + active(y == c) = false; +end + +% update data +X = X(active, :); +y = y(active); +session = session(active); +z = z(active); +numClasses = max(y); +N = size(X, 1); +K = size(X, 2); + +% normalization +X = zscore(X); + +train = 1 : sum(active(1 : size(trainD, 1))); +test = train(end) + 1 : N; + +prec = zeros(numEx, 0); +recall = zeros(numEx, 0); +for ex = 1 : numEx + % NB classifier with multivariate Gaussians + Py = zeros(numClasses, 1); + Pxy = zeros(numClasses, K); + Sigma = zeros(K, K); + for c = 1 : numClasses + sub = train(y(train) == c); + if (~isempty(sub)) + Py(c) = length(sub) / length(train); + Pxy(c, :) = mean(X(sub, :), 1); + Sigma = Sigma + Py(c) * cov(X(sub, :)); + end + end + + switch (solver) + case 'NB' + % NB inference + logp = repmat(log(Py)', N, 1); + for c = 1 : numClasses + if (Py(c) > 0) + logp(:, c) = log(Py(c)) + log(mvnpdf(X, Pxy(c, :), Sigma)); + end + end + + case 'SHT' + % sequential hypothesis testing + logp = zeros(N, numClasses); + for c = 1 : numClasses + if (Py(c) > 0) + logp(:, c) = log(mvnpdf(X, Pxy(c, :), Sigma)); + end + end + + nhyp = zeros(N, 1); + for i = 1 : N + if ((i == 1) || (session(i - 1) ~= session(i))) + logp(i, :) = logp(i, :) + log(Py'); + nhyp(i) = 2; + else + logp(i, :) = logp(i, :) + logp(i - 1, :); + nhyp(i) = nhyp(i - 1) + 1; + end + end + end + + % prediction + [conf, yp] = max(logp, [], 2); + + % sum up all but the highest probability + norm1 = logp - repmat(conf, 1, numClasses); + norm1((1 : N) + (yp' - 1) * N) = -Inf; + norm1 = log(sum(exp(norm1), 2)); + + % evaluation + for i = 1 : 1000 + th = 3 - i; + sub = test(norm1(test) < th); + prec(ex, i) = mean(y(sub) == yp(sub)); + recall(ex, i) = length(sub) / length(test); + end +end +prec(isnan(prec)) = 1; + +hold on; +plot(100 * recall, 100 * prec, '-', ... + 'LineWidth', 1, 'MarkerSize', 4, 'MarkerFaceColor', 'w'); +xlabel('Recall [%]'); +ylabel('Precision [%]'); +hold off; +pause +pr = [recall',prec']; +save pr.mat pr; + +% figure; +% A = X - Pxy(y, :); +% for k = 1 : 9 +% subplot(2, 5, k); +% hist(A(:, k), -5 : 0.1 : 5); +% h = findobj(gca, 'Type', 'patch'); +% set(h, 'FaceColor', [0.5, 1, 0.5], 'LineStyle', 'none') +% axis([-3, 3, 0, Inf]); +% xlabel(sprintf('x_%i - E[x_%i | y]', k, k)); +% set(gca, 'XTick', []); +% ylabel(sprintf('P(x_%i - E[x_%i | y])', k, k)); +% set(gca, 'YTick', []); +% end -- cgit v1.2.3-70-g09d2