1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
#! /usr/bin/python
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import sys
import os
import scipy
import matplotlib as mpl
mpl.rcParams['font.size'] = 5
mpl.rcParams['lines.linewidth'] = 0.5
mpl.rcParams['figure.figsize'] = 2.2,2.2
mpl.rcParams['legend.fontsize'] = 5
mpl.rcParams['axes.linewidth'] = 0.5
mpl.rcParams['figure.subplot.hspace'] = 0.4
mpl.rcParams['figure.subplot.wspace'] = 0.4
legend_width = 0.2
out_dir = sys.argv[1]
#limbs distribution
plt.figure(figsize=(5.6,1.7))
data = np.loadtxt("../limbs-avg-zdiff/data.csv",delimiter=",")
data = data[#(data[:,1] == 25)
((data != -1).all(1))
& (data[:,4]>2)
& (data[:,4]<3)]
data = data[:,7:]*100
mean = data.mean(0)
var = data.std(0)
for i in range(len(mean)):
ax = plt.subplot(2,5,i+1)
n,b,p = plt.hist((data[:,i]-mean[i]),bins=100,normed=1,linewidth=0,color="lightgreen")
plt.plot(b,mlab.normpdf(b,0,var[i]),"red")
plt.xticks([])
plt.yticks([])
plt.xlabel("$x_"+str(i+1)+"-E[x_"+str(i+1)+"|y]$")
plt.ylabel("$P(x_"+str(i+1)+"-E[x_"+str(i+1)+"|y])$")
plt.savefig(os.path.join(out_dir,"limbs.pdf"),bbox_inches="tight",pad_inches=0.05)
#frames distribution
plt.figure(figsize=(4.5,2))
x = np.loadtxt("frames.txt",usecols=(0,))
y = range(1,len(x)+1)
width=0.8
plt.bar(y,x/x.sum()*100,width=width,linewidth=0,color="lightgreen")
plt.xlim(0.8,26)
plt.xticks([i+width/2. for i in range(1,len(x),5)], range(1,len(x),5))
plt.xlabel("Individual")
plt.ylabel("Frame ratio [%]")
plt.ylim(0,17)
plt.savefig(os.path.join(out_dir,"frames.pdf"),bbox_inches="tight",pad_inches=0.05)
l = ["3","5","10","all"]
#10-fold, naive
plt.figure()
for i in l:
x,y = np.loadtxt(i+"_nb_off.mat",unpack=True)
plt.plot(100*x,100*y,label="$n_p=$ "+i)
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
leg =plt.legend(loc="best")
leg.get_frame().set_linewidth(legend_width)
plt.axis([0,100,50,100])
plt.gca().set_aspect(2)
plt.savefig(os.path.join(out_dir,"offline-nb.pdf"),bbox_inches="tight",pad_inches=0.05)
#10-fold, SHT
plt.figure()
for i in l:
x,y = np.loadtxt(i+"_sht_off.mat",unpack=True)
plt.plot(100*x,100*y,label="$n_p=$ "+i)
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
leg = plt.legend(loc="lower left")
leg.get_frame().set_linewidth(legend_width)
plt.axis([0,100,50,100])
plt.gca().set_aspect(2)
plt.savefig(os.path.join(out_dir,"offline-sht.pdf"),bbox_inches="tight",pad_inches=0.05)
#online,NB
plt.figure()
for i in l:
x,y = np.loadtxt(i+"_nb_on.mat",unpack=True)
plt.plot(100*x,100*y,label="$n_p=$ "+i)
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
leg = plt.legend(loc="best")
leg.get_frame().set_linewidth(legend_width)
plt.axis([0,100,50,100])
plt.gca().set_aspect(2)
plt.savefig(os.path.join(out_dir,"online-nb.pdf"),bbox_inches="tight",pad_inches=0.05)
#online,SHT
plt.figure()
for i in l:
x,y = np.loadtxt(i+"_sht_on.mat",unpack=True)
plt.plot(100*x,100*y,label="$n_p=$ "+i)
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
leg = plt.legend(loc="best")
leg.get_frame().set_linewidth(legend_width)
plt.axis([0,100,50,100])
plt.gca().set_aspect(2)
plt.savefig(os.path.join(out_dir,"online-sht.pdf"),bbox_inches="tight",pad_inches=0.05)
#face
plt.figure()
x,y = np.loadtxt("all_nb_split.mat",unpack=True)
a,b = np.loadtxt("face.csv",delimiter=",", unpack=True)
plt.plot(100*x,100*y,label="Skeleton")
plt.plot(100*a,100*b,label="Face")
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
leg = plt.legend(loc="best")
leg.get_frame().set_linewidth(legend_width)
plt.axis([0,100,50,100])
plt.gca().set_aspect(2)
plt.savefig(os.path.join(out_dir,"face.pdf"),bbox_inches="tight",pad_inches=0.05)
#back
plt.figure()
x,y = np.loadtxt("back_all_sht_on.mat",unpack=True)
a,b = np.loadtxt("all_sht_off.mat",unpack=True)
c,d = np.loadtxt("front_back_all_sht.mat",unpack=True)
plt.plot(100*a,100*b,label="Toward")
plt.plot(100*x,100*y,label="Away")
plt.plot(100*c,100*d,label="Combined")
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
leg = plt.legend(loc="best")
leg.get_frame().set_linewidth(legend_width)
plt.axis([0,100,50,100])
plt.gca().set_aspect(2)
plt.savefig(os.path.join(out_dir,"back.pdf"),bbox_inches="tight",pad_inches=0.05)
#variance-reduction
plt.figure()
x,y = np.loadtxt("half-var-all_sht_on.mat",unpack=True)
a,b = np.loadtxt("all_sht_on.mat",unpack=True)
plt.plot(100*x,100*y,label="Reduced noise")
plt.plot(100*a,100*b,label="Original noise")
plt.xlabel("Recall [%]")
plt.ylabel("Precision [%]")
leg = plt.legend(loc="best")
leg.get_frame().set_linewidth(legend_width)
plt.axis([0,100,50,100])
plt.gca().set_aspect(2)
plt.savefig(os.path.join(out_dir,"var.pdf"),bbox_inches="tight",pad_inches=0.05)
|