summaryrefslogtreecommitdiffstats
path: root/data/face-frame-recognition-accuracy.py
blob: 1f06329bfa128e25c42a707dc36757c0c0ed5480 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/python
import numpy as np
import os
import sys
import pickle
import math

prun = 0
runs = {}
labels = {}
users = pickle.load((open(sys.argv[3])))
recs = map(lambda x:0,users)
conf = {}
thresh = 0.0
top_users = np.loadtxt(sys.argv[4])[-5:,1]

for line in open(sys.argv[1]):
    line = line.split(',')
    try:
        run = int(line[3])
    except:
        continue
    user = line[1]
    if run not in labels:
        #runs[run] = 0
        labels[run] = users.index(user) + 1

for line in open(sys.argv[2]):
    line = line.split(',')
    run = int(line[3])
    user = line[1]
    if users.index(user)+1 in top_users:
        i = 6
        while i < len(line)-1:
            pred_user = ' '.join(line[i].split('@')[0].split('_'))
            if users.index(pred_user)+1 in top_users:
                conf[run] = float(line[i+1])/100
                runs[run] = users.index(pred_user)+1 
                break
            i += 2 

for i in range(999)+list(np.arange(999,1000,0.01)):
    thresh = i/1000.0
    t=0.0
    tp=0.0
    fp=0.0
    fn=0.0
    for (k,v) in runs.items():
        #print v,labels[k]
        if conf[k] < thresh:
            fn += 1
        elif v != labels[k]:
            fp += 1
        else:
            tp += 1
        t += 1
    #print runs[167],labels[167]
    #print tp,fp,fn
    #print("Precision: ",tp/(tp+fp))
    #print("False positives: ",fp/(tp+fp))
    #print("Recall: ",1.0-fn/t)
    try:
        print str(1.0-fn/t)+","+str(tp/(tp+fp))
    except:
        print "0,1"