\documentclass[a4paper,10pt]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{listings} \lstset{escapechar=?, mathescape=true} \title{Pacemaker} % #1: fig:label % #2: Handler title % #3: caption \newenvironment{handler}[3]{% \def\handlerlabel{fig:#1}% \def\handlertitle{#2}% \def\handlercaption{#3}% \begin{figure}[!h]% \center\vspace{1em}% \noindent\begin{tabular}{|p{\textwidth}|}% \hline% \footnotesize% {\tt\bf \handlertitle}% } {% \\ \hline% \end{tabular}% \caption{\handlercaption}% \label{\handlerlabel}% \end{figure}% } \begin{document} \maketitle \section{Base protocol} \subsection{Principle} \begin{itemize} \item{\bf Phase 1:} The server generates a unique seed and initiates a seed pulse which is diffused through the network. Upon receiving the seed, each peer signs it with its private key and hashes it. This hash is called the \emph{token} of the peer. \item{\bf Phase 2:} Each peer starts collecting the tokens of its neighbors and joins its own hash, obtaining a \emph{peer-token} map. This map is then hashed and the hash yields a new token which is sent back to the neighbors. This progressively builds a hash tree until the root server itselfs hashes the tokens of its children. \item{\bf Phase 3:} The server initiates a new pulse with the map it has collected from its childrens. Upon receiving the pulse, each peer adds to the pulse the map associated with the token that has been collected during Phase 2. Thus, each peer receives a list of hash maps corresponding to a branch from the root to itself in the hash tree computed during phase 2. \end{itemize} \subsection{Messages} It is assumed that each peer $p$ has a pair of public/private key \textsf{(K$^p_{pub}$, K$^p_{priv}$)} and has access to the 3 following cryptographic primitives: \begin{itemize} \item{\sf sign(data, K$_{priv}$):} Returns a signature for \textsf{data} using the private key \textsf{K$_{priv}$}. \item \item{\sf verify(S, data, K$_{pub}$):} Verifies that \textsf{S} is a signature for \textsf{data} that was created using the private key \textsf{K$_{priv}$} associated with \textsf{K$_{pub}$}. \item{\sf hash(data):} Returns the hash of \textsf{data}. \end{itemize} The key pair of the server will be denoted by \textsf{(KS$_{pub}$, KS$_{priv}$)}. \textsf{KS$_{pub}$} is assumed to be known by every peer. The following messages are used in the protocol : \begin{itemize} \item{\sf Seed($i$, seed$^i$, S$^i_{seed}$):} used to diffuse the seed pulse during phase 1, where: \begin{itemize} \item $i$ is the round number. \item \textsf{seed$^i$} is the seed of round $i$. \item \textsf{S$^i_{pulse}$} is \textsf{sign(<$i$,seed$^i$>, KS$_{priv}$)}. \end{itemize} \item{\sf SeedReply($i$, H$_p$):} used to build the hash tree during Phase 2, where \textsf{H$_p$} is the token received from peer $p$, that is, the hash of the collected map of the tokens received by peer $p$. \item{\sf Pulse($i$, seed$^i$, H$^i$, level, branch$^i$, S$^i_{pulse}$):} used during Phase 3. \item{\sf Challenge($i$, $p$):} used to ask peer $p$ the proof of its presence during round $i$. \item{\sf Proof($i$, seed$^i$, branch$^i$, S$^i_{pulse}$, S$^i_p$):} to answer a challenge. \end{itemize} \subsection{Protocol} \begin{handler}{server-init}{Server at round $i$}{} \begin{lstlisting} let phase$^i$ = Seeding; let seed$^i$ = random_seed(); let S$^i_{seed}$ = sign( <$i$,seed$^i$>, KS$_{priv}$); let M$^i_{seed}$ = Seed($i$,seed$^i$,S$^i_{seed}$); let map$^i$ = $\emptyset$ $\forall q \in$ NS$_{server}$, send($q$, M$^i_{seed}$); wait $T$; phase$^i$ = Idle; H$^i$ = Hash(map$^i$); let S$^i_{pulse}$ = sign( <$i$,seed$^i$,H$^i$>, KS$_{priv}$ ); let M$^i_{pulse}$ = Pulse($i$, seed$^i$, H$^i$, 0, $\{$ 0 $\rightarrow$ map$^i$ $\}$, S$^i_{pulse}$); $\forall q \in$ NS$_{server}$, send($q$, M$^i_{pulse}$); \end{lstlisting} \end{handler} \begin{handler}{xn}{Server or peer receiving SeedReply ($i$, X$_q$) from peer $q$:}{} \begin{lstlisting}{} if phase$^i$ = Seeding then map$^i$ = $\{ q \rightarrow $X$_q \} \oplus$ map$^i$; end if \end{lstlisting} \end{handler} \begin{handler}{xn}{Every $\Delta << T$ seconds, on peer $p$:}{} \begin{lstlisting}{} if phase$^i$ = Seeding then let H$^i$ = H(map$^i$); let M$^i_{seedreply}$ = SeedReply($i$, H$^i$ ); nreplies$^i$ = nreplies$^i$ + 1; replies$^i$[ nreplies$^i$ ] = (H$^i$, map$^i$); $\forall q \in$ NS$_p$, send($q$, M$^i_{seedreply}$); end if \end{lstlisting} \end{handler} \begin{handler}{x1}{Peer $p$ receiving M$^i_{seed}$ = Seed ($i$,seed$^i$,S$^i_{seed}$):}{} \begin{lstlisting}{} if verify_sig( S$^i_{seed}$, <$i$,seed$^i$>, KS$_{priv}$) then $\forall q \in$ NS$_p$, send($q$, M$^i_{seed}$); let S$^i_p$ = sign( <$i$,seed$^i$>, K$^p_{priv}$); let map$^i$ = $\{ p \rightarrow H(S^i_p) \}$ nreplies$^i$ = 0; phase$^i$ = Seeding; end if \end{lstlisting} \end{handler} \begin{handler}{x3}{Peer $p$ receiving Pulse($i$, seed$^i$, H$^i$, level, tree$^i$, S$^i_{pulse}$):}{} \begin{lstlisting}{} if verify_sig(S$^i_{pulse}$, <$i$, seed$^i$, H$^i$ >, KS$_{pub}$ ) then phase$^i$ = Idle; included$^i$ = $\bot$; if $\exists$ $\{$ $p$ $\rightarrow$ H$^i$ $\}$ $\in$ tree$^i$[level] and $\exists$ $n$ $|$ replies[$n$] = (H$^i$, oldmap$^i$) and included$^i$ $<$ $n$ and verify_tree(H$^i$, level, tree$^i$) then let tree'$^i$ = tree$^i$ $\oplus$ $\{$ level+1 $\rightarrow$ oldmap$^i$ $\}$; M$^i_{pulse}$ = ($i$, seed$^i$, H$^i$, level+1, tree'$^i$, S$^i_{pulse}$) History[$i$] = M$^i_{pulse}$; included$^i$ = $n$; $\forall q \in$ children$^p$, send($q$, Pulse M$^i_{pulse}$); end if end if \end{lstlisting} \end{handler} \begin{handler}{x4}{Peer $p$ sending to $q$ its availability at round $i$:}{} \begin{lstlisting}{} let bits$^i$ = new bitfield[$N_t$]; for $x$ in [1..$N_t$] if History[$i-N_t+x$] = $\emptyset$ then bits$^i$[$x$] := 0 else bits$^i$[$x$] := 1 end if end for let S$^i_{avail}$ = sign( < $i$, bits$^i$ >, K$^p_{priv}$ ) let M$^i_{avail}$ = ($i$,bits,S$^i_{avail}$); send( $q$, Availability M$^i_{avail}$ ) \end{lstlisting} \end{handler} \begin{handler}{x5}{Peer $p$ receiving Challenge($i$, nonce) from peer $q$:}{} \begin{lstlisting}{} let M$^i_{pulse}$ = History[$i$] send( $q$, Proof M$^i_{pulse}$) \end{lstlisting} \end{handler} \begin{handler}{x6}{Peer $q$ receiving from peer $p$ Proof ($i$, nonce, K$^i_{pub}$, trees$^i$, S$^i_p$, S$^i_{pulse}$, S$_{proof}$):}{} \begin{lstlisting}{} Peer $q$ receiving from peer $p$ Proof ($i$, nonce, K$^i_{pub}$, trees$^i$, S$^i_p$, S$^i_{pulse}$, S$_{proof}$): if ($i$, nonce, $p$) $\in$ challenges $\land$ verify_sig(S$^i_{pulse}$,<$i$, seed$^i$,$K^i_{pub}$,trees$^i$[0]>,KS$_{pub}$) $\land$ verify_sig(S$^i_p$, <$i$, seed$^i$ >, K$^p_{pub}$) $\land$ S$^i_p$ $\in$ trees$^i$ $\land$ $\forall n>0$, H(trees$^i$[n]) $\in$ trees$^i$[n-1] $\land$ verify_sig(S$_{proof}$, < nonce, H$^p$, H$^q$ >, K$^i_{pub}$ ) then good_reply($p$) else bad_reply($p$) end if \end{lstlisting} \end{handler} \end{document}