summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2012-10-25 09:46:45 -0700
committerThibaut Horel <thibaut.horel@gmail.com>2012-10-25 09:46:45 -0700
commit17e26da5db3abe7e656abfb93651696e4d0105a5 (patch)
tree5258c78b6084bba902d4d9687b07a5d966c85aa8
parent4a30a333b0d44d71bc9a9c825236f2e4421a1439 (diff)
downloadrecommendation-17e26da5db3abe7e656abfb93651696e4d0105a5.tar.gz
Add notations, minor fixes
-rw-r--r--proof.tex30
1 files changed, 24 insertions, 6 deletions
diff --git a/proof.tex b/proof.tex
index e907518..5c9cb91 100644
--- a/proof.tex
+++ b/proof.tex
@@ -22,6 +22,21 @@
\section{Budget feasible mechanism}
+\subsection{Notations}
+
+\begin{itemize}
+ \item If $x\in\mathbf{R}^d$, $x^*$ will denote the transpose of vector $x$.
+ If $(x, y)\in\mathbf{R}^d\times\mathbf{R}^d$, $x^*y$ is the standard
+ inner product of $\mathbf{R}^d$.
+ \item We will often use the following order over symmetric matrices: if $A$
+ and $B$ are two $d\times d$ real symmetric matrices, we write that
+ $A\leq B$ iff:
+ \begin{displaymath}
+ \forall x\in\mathbf{R}^d,\quad x^*Ax \leq x^*Bx
+ \end{displaymath}
+ That is, iff $B-A$ is symmetric semi-definite positive.
+\end{itemize}
+
\subsection{Data model}
\begin{itemize}
\item set of $n$ users $\mathcal{N} = \{1,\ldots, n\}$
@@ -287,10 +302,12 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
Using the following inequalities:
\begin{gather*}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq
- P_\mathcal{N}^\lambda(S)\\
- A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\
- P_\mathcal{N}^\lambda(S\cup\{i\})\geq P_\mathcal{N}^\lambda(S)
+ \forall S\subset\mathcal{N}\setminus\{i\},\quad
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\
+ \forall S\subset\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
+ \geq P_\mathcal{N}^\lambda(S)\\
+ \forall S\subset\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\
\end{gather*}
we get:
\begin{align*}
@@ -429,7 +446,8 @@ The mechanism is budget feasible.
Then:
\begin{displaymath}
- V(S_M) \geq C_{\textrm{max}}\cdot OPT(V, \mathcal{N}, B)
+ OPT(V, \mathcal{N}, B) \leq
+ C_\text{max}\cdot V(S_M)
\end{displaymath}
\end{lemma}
@@ -486,7 +504,7 @@ This equation has two solutions. Only one of those is such that:
\begin{displaymath}
C\cdot C_\mu(e-1) -5e +1 \geq 0
\end{displaymath}
-which is a needed in the proof of the previous lemma. Computing this solution,
+which is needed in the proof of the previous lemma. Computing this solution,
we can state the main result of this section.
\begin{theorem}