diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-25 09:46:45 -0700 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-25 09:46:45 -0700 |
| commit | 17e26da5db3abe7e656abfb93651696e4d0105a5 (patch) | |
| tree | 5258c78b6084bba902d4d9687b07a5d966c85aa8 | |
| parent | 4a30a333b0d44d71bc9a9c825236f2e4421a1439 (diff) | |
| download | recommendation-17e26da5db3abe7e656abfb93651696e4d0105a5.tar.gz | |
Add notations, minor fixes
| -rw-r--r-- | proof.tex | 30 |
1 files changed, 24 insertions, 6 deletions
@@ -22,6 +22,21 @@ \section{Budget feasible mechanism} +\subsection{Notations} + +\begin{itemize} + \item If $x\in\mathbf{R}^d$, $x^*$ will denote the transpose of vector $x$. + If $(x, y)\in\mathbf{R}^d\times\mathbf{R}^d$, $x^*y$ is the standard + inner product of $\mathbf{R}^d$. + \item We will often use the following order over symmetric matrices: if $A$ + and $B$ are two $d\times d$ real symmetric matrices, we write that + $A\leq B$ iff: + \begin{displaymath} + \forall x\in\mathbf{R}^d,\quad x^*Ax \leq x^*Bx + \end{displaymath} + That is, iff $B-A$ is symmetric semi-definite positive. +\end{itemize} + \subsection{Data model} \begin{itemize} \item set of $n$ users $\mathcal{N} = \{1,\ldots, n\}$ @@ -287,10 +302,12 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: Using the following inequalities: \begin{gather*} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq - P_\mathcal{N}^\lambda(S)\\ - A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\ - P_\mathcal{N}^\lambda(S\cup\{i\})\geq P_\mathcal{N}^\lambda(S) + \forall S\subset\mathcal{N}\setminus\{i\},\quad + P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq + P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\ + \forall S\subset\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S) + \geq P_\mathcal{N}^\lambda(S)\\ + \forall S\subset\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\ \end{gather*} we get: \begin{align*} @@ -429,7 +446,8 @@ The mechanism is budget feasible. Then: \begin{displaymath} - V(S_M) \geq C_{\textrm{max}}\cdot OPT(V, \mathcal{N}, B) + OPT(V, \mathcal{N}, B) \leq + C_\text{max}\cdot V(S_M) \end{displaymath} \end{lemma} @@ -486,7 +504,7 @@ This equation has two solutions. Only one of those is such that: \begin{displaymath} C\cdot C_\mu(e-1) -5e +1 \geq 0 \end{displaymath} -which is a needed in the proof of the previous lemma. Computing this solution, +which is needed in the proof of the previous lemma. Computing this solution, we can state the main result of this section. \begin{theorem} |
