diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-02-10 23:48:49 -0800 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-02-10 23:48:49 -0800 |
| commit | 2b9393eb3d79cd29b5b5c1b0582199c9592459e4 (patch) | |
| tree | e529e3a65971f2bc5d7e6f3cea9c433472a21f4d | |
| parent | e788f78d909b7ecfaf11cd14eee15f1ae5ba1ff4 (diff) | |
| parent | f860a24c2af817aeeb4a944d618bc2d978900201 (diff) | |
| download | recommendation-2b9393eb3d79cd29b5b5c1b0582199c9592459e4.tar.gz | |
Merge branch 'master' of ssh://74.95.195.229:1444/git/data_value
| -rw-r--r-- | main.tex | 75 |
1 files changed, 28 insertions, 47 deletions
@@ -16,37 +16,28 @@ element $i$ to be included is the one which maximizes the i = \argmax_{j\in\mathcal{N}\setminus S}\frac{V(S\cup\{i\}) - V(S)}{c_i}\label{greedy} \end{align} This is repeated until the sum of costs of elements in $S$ reaches the budget -constraint $B$. We denote by $S_G$ the set constructed by this heuristic. As -shown in \cite{khuller}, $V(S_G)$ has an unbounded approximation ratio to $OPT$. -However, let $i^* = \argmax_{i\in\mathcal{N}} V(\{i\})$ be the element of -maximum value, then defining: -\begin{displaymath} -S^* = \left\{ -\begin{aligned} -\{i^*\}\quad &\textrm{if}\; V(\{i^*\}) \geq V(S_G)\\ -S_G\quad&\textrm{otherwise} -\end{aligned}\right., -\end{displaymath} -$V(S^*)$ has a bounded approximation to $OPT$. Formally, the following lemma holds. +constraint $B$. Denote by $S_G$ the set constructed by this heuristic and by +$i^* = \argmax_{i\in\mathcal{N}} V(\{i\})$, then the following lemma holds: \begin{lemma}~\cite{chen}\label{lemma:greedy-bound} Let $S_G$ be the set computed by the greedy algorithm and let -$i^* = \argmax_{i\in\mathcal{N}} V(i).$ We have: +$i^* = \argmax_{i\in\mathcal{N}} V(\{i\}).$ We have: \begin{displaymath} OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big). \end{displaymath} \end{lemma} -This lemma immediately proves an approximation ratio of $\frac{5e}{e-1}$ for -the afore-mentioned approach. A more sophisticated -algorithm~\cite{sviridenko-submodular} can attain the optimal $\frac{e}{e-1}$ -approximation ratio +This lemma immediately implies that the following algorithm: +\begin{equation}\label{eq:algorithm} +\textbf{if}\; V(\{i^*\}) \geq V(S_G)\; \textbf{return}\; \{i^*\} +\;\textbf{else return}\; S_G +\end{equation} +has an approximation ratio of $\frac{5e}{e-1}$. \subsection*{Submodular maximization in the strategic case} -Following the full information approach, allocating to agent $i^*$ when -$V(i^*)\geq V(S_G)$ and to $S_G$ otherwise, breaks incentive compatibility. -Indeed, \citeN{singer-influence} notes that this allocation function is not -monotone, which implies by Myerson's theorem (Theorem~\ref{thm:myerson}) that -the resulting mechanism is not truthful. +In the strategic case, Algorithm~\ref{eq:algorithm} breaks incentive +compatibility. Indeed, \citeN{singer-influence} notes that this allocation +function is not monotone, which implies by Myerson's theorem +(Theorem~\ref{thm:myerson}) that the resulting mechanism is not truthful. Let us denote by $OPT_{-i^*}$ the optimal value achievable in the full-information case after removing $i^*$ from the set $\mathcal{N}$: @@ -56,16 +47,12 @@ full-information case after removing $i^*$ from the set $\mathcal{N}$: \end{equation} \citeN{singer-mechanisms} and \citeN{chen} prove that using the following allocation: -\begin{displaymath} -\textrm{allocate to}\quad\left\{ -\begin{aligned} -i^*\quad&\textrm{if}\; V(i^*)\geq C.OPT_{-i^*} \\ -S_G\quad&\textrm{otherwise} -\end{aligned} -\right. +\begin{displaymath}\label{eq:algorithm} +\textbf{if}\; V(\{i^*\}) \geq C. OPT_{-i^*}\; \textbf{return}\; \{i^*\} +\;\textbf{else return}\; S_G \end{displaymath} yields a 8.34-approximation mechanism for an appropriate $C$ (see also -Algorithm \ref{mechanism}. However, $OPT_{-i^*}$, the maximum value attainable +Algorithm~\ref{mechanism}). However, $OPT_{-i^*}$, the maximum value attainable in the full-information case, cannot be computed in poly-time when the underlying problem is NP-hard (unless P=NP), as is the case for \SEDP{}. @@ -204,10 +191,8 @@ Finally, we prove the approximation ratio of the mechanism. We use the following lemma which establishes that $OPT'$, the optimal value \eqref{relax} of the fractional relaxation $L$ under the budget constraints is not too far from $OPT$. \begin{lemma}[Approximation]\label{lemma:relaxation} - %\begin{displaymath} $ OPT' \leq 2 OPT + 2\max_{i\in\mathcal{N}}V(i)$ - %\end{displaymath} \end{lemma} The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution, and can be found in Section \ref{sec:relaxation}. @@ -348,10 +333,8 @@ or the $j$-th component of $\lambda$ becomes integral. \begin{proof} We give a rounding procedure which, given a feasible $\lambda$ with at least two fractional components, returns some feasible $\lambda'$ with one less fractional - component such that: - \begin{displaymath} - F(\lambda) \leq F(\lambda') - \end{displaymath} + component such that $F(\lambda) \leq F(\lambda')$. + Applying this procedure recursively yields the lemma's result. Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two fractional components of $\lambda$ and let us define the following @@ -473,11 +456,11 @@ Using this, =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i \end{displaymath} -For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if $A-B$ is positive definite (positive semi-definite). -This order allows us to define the notion of a \emph{decreasing} as well as \emph{convex} -matrix function, similarly to their real counterparts. In particular, - matrix inversion is decreasing and convex over symmetric -positive definite matrices. +For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if +$A-B$ is positive definite (positive semi-definite). This order allows us to +define the notion of a \emph{decreasing} as well as \emph{convex} matrix +function, similarly to their real counterparts. With this definition, matrix +inversion is decreasing and convex over symmetric positive definite matrices. In particular, \begin{gather*} \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1} @@ -507,11 +490,9 @@ In particular, P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big) \end{align*} - Using that $A(S)\succeq I_d$ we get that: - \begin{displaymath} - \T{x_i}A(S)^{-1}x_i \leq \norm{x_i}_2^2 \leq 1 - \end{displaymath} - Moreover, $\log(1+x)\geq x$ for all $x\leq 1$. Hence: + Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq + \norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$. + Hence: \begin{displaymath} \partial_i F(\lambda) \geq \frac{1}{4} @@ -576,7 +557,7 @@ Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that $L(\lambda^*) \begin{displaymath} F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}) \end{displaymath} - Using the submodularity of $V$: + By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$, hence: \begin{displaymath} F(\bar{\lambda}) \leq V(S) + V(i) \end{displaymath} |
