diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-23 16:26:49 -0700 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-23 16:26:49 -0700 |
| commit | 4a31aa7433707a2b5b93200223c4f4ccb39e9c20 (patch) | |
| tree | f86492f8944c7a6897b55f77307cc9cc4f384f86 | |
| parent | 9a767039fd69ef1c8e2d65a6adc36fd5ae269e51 (diff) | |
| download | recommendation-4a31aa7433707a2b5b93200223c4f4ccb39e9c20.tar.gz | |
Add proof of lemma 4
| -rw-r--r-- | proof.tex | 38 |
1 files changed, 36 insertions, 2 deletions
@@ -127,7 +127,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \end{multline*} \end{proof} -\begin{lemma}[Rounding] +\begin{lemma}[Rounding]\label{lemma:rounding} For any feasible $\lambda\in[0,1]^n$, there exists a feasible $\bar{\lambda}\in[0,1]^n$ such that at most one of its component is fractional, that is, lies in $(0,1)$ and: @@ -182,7 +182,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: $\lambda_\varepsilon$ becomes integral. \end{proof} -\begin{lemma} +\begin{lemma}\label{lemma:relaxation-ratio} The following inequality holds: \begin{displaymath} \forall\lambda\in[0,1]^n,\; @@ -330,6 +330,40 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \end{displaymath} \end{lemma} +\begin{proof} + Let us consider a feasible point $\lambda^*\in[0,1]^n$ such that $L_\mathcal{N}(\lambda^*) + = OPT(L_\mathcal{N}, B)$. By applying lemma~\ref{lemma:relaxation-ratio} + and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most + one fractional component such that: + \begin{equation}\label{eq:e1} + L_\mathcal{N}(\lambda^*) \leq \frac{1}{C_\kappa} + F_\mathcal{N}(\bar{\lambda}) + \end{equation} + + Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$ + denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$. + Using the fact that $F_\mathcal{N}$ is linear with respect to the $i$-th + component and is a relaxation of the value function, we get: + \begin{displaymath} + F_\mathcal{N}(\bar{\lambda}) = V(S) +\lambda_i V(S\cup\{i\}) + \end{displaymath} + + Using the submodularity of $V$: + \begin{displaymath} + F_\mathcal{N}(\bar{\lambda}) \leq 2 V(S) + V(i) + \end{displaymath} + + Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and + $V(S)\leq OPT(V,\mathcal{N}, B)$. Hence: + \begin{equation}\label{eq:e2} + F_\mathcal{N}(\bar{\lambda}) \leq 2 OPT(V,\mathcal{N}, B) + + \max_{i\in\mathcal{N}} V(i) + \end{equation} + + Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results. + +\end{proof} + \begin{algorithm} \caption{Budget feasible mechanism for ridge regression} \begin{algorithmic}[1] |
