diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2012-11-05 11:21:44 -0800 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2012-11-05 11:21:44 -0800 |
| commit | ec33fdd2abaa9342ea6613bee4e59a5125009de9 (patch) | |
| tree | a4e5918dcb273e816a2011747021dd79e2d55f88 | |
| parent | aae88b4620e3b267915c59678bde1a6f0d2c14e3 (diff) | |
| download | recommendation-ec33fdd2abaa9342ea6613bee4e59a5125009de9.tar.gz | |
muthu changes
| -rw-r--r-- | main.tex | 7 |
1 files changed, 5 insertions, 2 deletions
@@ -367,7 +367,7 @@ Hence, the total payment is bounded by the telescopic sum: \end{proof} Finally, we prove the approximation ratio of the mechanism. We use the -following lemma which we prove later, which establishes that $OPT'$, the optimal value \eqref{relax} of the fractional relaxation $L$ under the budget constraints +following lemma which establishes that $OPT'$, the optimal value \eqref{relax} of the fractional relaxation $L$ under the budget constraints is not too far from $OPT$. \begin{lemma}\label{lemma:relaxation} %\begin{displaymath} @@ -375,9 +375,12 @@ following lemma which we prove later, which establishes that $OPT'$, the optimal + 2\max_{i\in\mathcal{N}}V(i)$ %\end{displaymath} \end{lemma} +The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution, and can be found in Section \ref{sec:relaxation}. + + +\paragraph{Finishing Proof of } Note that the lower bound $OPT' \geq OPT $ also holds trivially, as $L$ is a fractional relaxation of $V$ over $\mathcal{N}$. -The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution, and can be found in Section \ref{sec:relaxation}. Using this lemma, we can complete the proof of Theorem~\ref{thm:main} by showing that, %\begin{lemma}\label{lemma:approx} %C_{\textrm{max}} = \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C %(e-1) -10e +2}\right)\right) |
