diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2013-02-11 11:45:10 -0800 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2013-02-11 11:45:10 -0800 |
| commit | bbf9c47b9fc6870a1e755adfa97cd3a688a0478a (patch) | |
| tree | 686ed9426dce5f0f1ecca68c78d12b7998886f51 | |
| parent | da5d7f0d127f58b42c3dd4acdbd647a513e6b10d (diff) | |
| download | recommendation-bbf9c47b9fc6870a1e755adfa97cd3a688a0478a.tar.gz | |
Some fixes to main and proof sections
| -rw-r--r-- | main.tex | 29 | ||||
| -rw-r--r-- | proofs.tex | 29 |
2 files changed, 35 insertions, 23 deletions
@@ -2,7 +2,7 @@ In this section we present our mechanism for \SEDP. Prior approaches to budget feasible mechanisms for sudmodular maximization build upon the full information -case which we discuss first. +case, which we discuss first. \subsection{Submodular Maximization in the Full Information Case} @@ -16,8 +16,8 @@ element $i$ to be included is the one which maximizes the i = \argmax_{j\in\mathcal{N}\setminus S}\frac{V(S\cup\{i\}) - V(S)}{c_i}\label{greedy} \end{align} This is repeated until the sum of costs of elements in $S$ reaches the budget -constraint $B$. Denote by $S_G$ the set constructed by this heuristic and by -$i^* = \argmax_{i\in\mathcal{N}} V(\{i\})$, then the following lemma holds: +constraint $B$. Denote by $S_G$ the set constructed by this heuristic and let +$i^*$ be the element of maximum value. Then, the following lemma holds: \begin{lemma}~\cite{chen}\label{lemma:greedy-bound} Let $S_G$ be the set computed by the greedy algorithm and let $i^* = \argmax_{i\in\mathcal{N}} V(\{i\}).$ We have: @@ -25,6 +25,7 @@ $i^* = \argmax_{i\in\mathcal{N}} V(\{i\}).$ We have: OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big). \end{displaymath} \end{lemma} + This lemma immediately implies that the following algorithm: \begin{equation}\label{eq:max-algorithm} \textbf{if}\; V(\{i^*\}) \geq V(S_G)\; \textbf{return}\; \{i^*\} @@ -45,10 +46,10 @@ full-information case after removing $i^*$ from the set $\mathcal{N}$: OPT_{-i^*} \defeq \max_{S\subseteq\mathcal{N}\setminus\{i^*\}} \Big\{V(S) \;\Big| \; \sum_{i\in S}c_i\leq B\Big\} \end{equation} -\citeN{singer-mechanisms} and \citeN{chen} prove that using the following +\citeN{singer-mechanisms} and \citeN{chen} prove that the following allocation: \begin{displaymath} -\textbf{if}\; V(\{i^*\}) \geq C. OPT_{-i^*}\; \textbf{return}\; \{i^*\} +\textbf{if}\; V(\{i^*\}) \geq C \cdot OPT_{-i^*}\; \textbf{return}\; \{i^*\} \;\textbf{else return}\; S_G \end{displaymath} yields a 8.34-approximation mechanism for an appropriate $C$ (see also @@ -79,9 +80,9 @@ denotes the indicator vector of $S$. The optimization program \leq B\right\}\label{relax} \end{align} -One of the main technical contribution of \citeN{chen} and -\citeN{singer-influence} is to come up with appropriate relaxations for -\textsc{Knapsack} and \textsc{Coverage} respectively. +One of the main technical contributions of \citeN{chen} and +\citeN{singer-influence} is to come up with appropriate such relaxations for +\textsc{Knapsack} and \textsc{Coverage}, respectively. \subsection{Our Approach} @@ -98,7 +99,8 @@ method for self-concordant functions in \cite{boyd2004convex}, shows that finding the maximum of $L$ to any precision $\varepsilon$ can be done in $O(\log\log\varepsilon^{-1})$ iterations. Being the solution to a maximization problem, $L^*$ satisfies the required monotonicity property. The main challenge -will be to prove that $OPT'_{-i^*}$, for our relaxation $L$, is close to $OPT$. +will be to prove that $OPT'_{-i^*}$, for our relaxation $L$, is close to +$OPT_{-i^*}$. \begin{algorithm}[t] \caption{Mechanism for \SEDP{}}\label{mechanism} @@ -138,9 +140,10 @@ be found in~\cite{singer-mechanisms}. We can now state our main result: \begin{theorem}\label{thm:main} \sloppy - The allocation described in Algorithm~\ref{mechanism}, along with threshold payments, is truthful, individually rational - and budget feasible. Furthermore, for any $\varepsilon>0$, the mechanism - runs in time $O\left(\text{poly}(n, d, + The allocation described in Algorithm~\ref{mechanism}, along with threshold + payments, is truthful, individually rational and budget feasible. + Furthermore, there exists an absolute constant $C$ such that, for any + $\varepsilon>0$, the mechanism runs in time $O\left(\text{poly}(n, d, \log\log \varepsilon^{-1})\right)$ and returns a set $S^*$ such that: \begin{align*} OPT @@ -148,6 +151,8 @@ We can now state our main result: \varepsilon\\ & \simeq 12.98V(S^*) + \varepsilon \end{align*} + The value of the constant $C$ is given by \eqref{eq:constant} in + Section~\ref{sec:proofofmainthm}. \end{theorem} \fussy @@ -6,10 +6,12 @@ budget feasibility follow the same steps as the analysis of \citeN{chen}; for the sake of completeness, we restate their proof in the Appendix. The complexity of the mechanism is given by the following lemma. + \begin{lemma}[Complexity]\label{lemma:complexity} For any $\varepsilon > 0$, the complexity of the mechanism is $O(\text{poly}(n, d, \log\log \varepsilon^{-1}))$. \end{lemma} + \begin{proof} The value function $V$ in \eqref{modified} can be computed in time $O(\text{poly}(n, d))$ and the mechanism only involves a linear @@ -50,11 +52,12 @@ OPT \end{equation} To see this, let $OPT_{-i^*}'$ be the true maximum value of $L$ subject to $\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. Assume -that on line 3 of algorithm~\ref{mechanism}, a quantity $\tilde{L}$ such that +that on line 3 of Algorithm~\ref{mechanism}, a quantity $\tilde{L}$ such that $\tilde{L}-\varepsilon\leq OPT_{-i^*}' \leq \tilde{L}+\varepsilon$ has been computed (Lemma~\ref{lemma:complexity} states that this is computed in time -within our complexity guarantee). If the condition on line 3 of the algorithm -holds, then: +within our complexity guarantee). + +If the condition on line 3 of the algorithm holds, then: \begin{displaymath} V(i^*) \geq \frac{1}{C}OPT_{-i^*}'-\frac{\varepsilon}{C} \geq \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C} @@ -64,20 +67,24 @@ hence: \begin{equation}\label{eq:bound1} OPT\leq (1+C)V(i^*) + \varepsilon \end{equation} -Note that $OPT_{-i^*}'\leq OPT'$. If the condition does not hold, from Lemmas -\ref{lemma:relaxation} and \ref{lemma:greedy-bound}: -\begin{align*} - V(i^*) & \stackrel{}\leq \frac{1}{C}OPT_{-i^*}' + \frac{\varepsilon}{C} - \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}\\ - & \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G) + +If the condition does not hold, by observing that $OPT'_{-i^*}\leq OPT'$ and +applying Lemma~\ref{lemma:relaxation}, we get: +\begin{displaymath} + V(i^*) \stackrel{}\leq \frac{1}{C}OPT_{-i^*}' + \frac{\varepsilon}{C} + \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C} +\end{displaymath} +Applying Lemma~\ref{lemma:greedy-bound}: +\begin{displaymath} + V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G) + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C} -\end{align*} +\end{displaymath} Thus, if $C$ is such that $C(e-1) -6e +2 > 0$, \begin{align*} V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G) + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2} \end{align*} -Finally, using again Lemma~\ref{lemma:greedy-bound}, we get: +Finally, using Lemma~\ref{lemma:greedy-bound} again, we get: \begin{equation}\label{eq:bound2} OPT(V, \mathcal{N}, B) \leq \frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}\right) V(S_G) |
