diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2013-02-11 11:22:51 -0800 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2013-02-11 11:23:29 -0800 |
| commit | da5d7f0d127f58b42c3dd4acdbd647a513e6b10d (patch) | |
| tree | c46ca521546bf170a276d717d2a287db7f1e8f53 | |
| parent | e6861101d63540bace192193b45d4a1610188e36 (diff) | |
| download | recommendation-da5d7f0d127f58b42c3dd4acdbd647a513e6b10d.tar.gz | |
Fix multiple labels error in proofs.tex
| -rw-r--r-- | proofs.tex | 2 |
1 files changed, 1 insertions, 1 deletions
@@ -93,7 +93,7 @@ and \eqref{eq:bound2} respectively, we wish to chose for $C=C^*$ such that: This equation has two solutions. Only one of those is such that $C(e-1) -6e +2 \geq 0$. This solution is: \begin{equation}\label{eq:constant} - C^* = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)} \label{eq:c} + C^* = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)} \end{equation} For this solution, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$ Placing the expression of $C^*$ in \eqref{eq:bound1} and \eqref{eq:bound2} |
