diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2013-07-02 16:01:49 +0200 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2013-07-02 16:01:49 +0200 |
| commit | 1bd9da9fc37dc4f659a261ff65914feef1ef64f0 (patch) | |
| tree | 1d74e72e52fdd708a77e75c8abf1240b7dbd722d | |
| parent | c569d13f707706c49aea4cdd3635a0f73ed38f86 (diff) | |
| download | recommendation-1bd9da9fc37dc4f659a261ff65914feef1ef64f0.tar.gz | |
Rewrite the hand-wavy induction
| -rw-r--r-- | appendix.tex | 152 | ||||
| -rw-r--r-- | approximation.tex | 4 | ||||
| -rw-r--r-- | paper.tex | 2 | ||||
| -rw-r--r-- | proofs.tex | 0 |
4 files changed, 81 insertions, 77 deletions
diff --git a/appendix.tex b/appendix.tex index b757e8e..ca6d1df 100644 --- a/appendix.tex +++ b/appendix.tex @@ -8,7 +8,7 @@ For all $\lambda\in[0,1]^{n},$ \end{lemma} \begin{proof} - The bound $F_{\mathcal{N}}(\lambda)\leq L_{\mathcal{N}(\lambda)}$ follows by the concavity of the $\log\det$ function. + The bound $F_{\mathcal{N}}(\lambda)\leq L_{\mathcal{N}}(\lambda)$ follows by the concavity of the $\log\det$ function and Jensen's inequality. To show the lower bound, we first prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i F(\lambda)/\partial_i L(\lambda)$, where @@ -93,80 +93,84 @@ In particular, \begin{gather*} \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1} \end{gather*} -as $A(S)\preceq A(S\cup\{i\})$. Observe that - % \begin{gather*} - % \forall -$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})$ for all $S\subseteq\mathcal{N}\setminus\{i\}$, and - % ,\\ - $P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S),$ for all $S\subseteq\mathcal{N}$. - %\end{gather*} - Hence, - \begin{align*} - \partial_i F(\lambda) - % & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\ - & \geq \frac{1}{4} - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S) - \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\ - &\hspace{-3.5em}+\frac{1}{4} - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\}) - \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\ - &\geq \frac{1}{4} - \sum_{S\subseteq\mathcal{N}} - P_\mathcal{N}^\lambda(S) - \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big). - \end{align*} - Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq - \norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$. - Hence, - \begin{displaymath} - \partial_i F(\lambda) \geq - \frac{1}{4} - \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i. - \end{displaymath} - Finally, using that the inverse is a matrix convex function over symmetric - positive definite matrices: - \begin{displaymath} - \partial_i F(\lambda) \geq - \frac{1}{4} - \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i - = \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i - = \frac{1}{2} - \partial_i L(\lambda). - \end{displaymath} +as $A(S)\preceq A(S\cup\{i\})$. Observe that since $1\leq \lambda_i\leq 1$, +$P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S)$ and +$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}}^\lambda(S\cup\{i\})$ +for all $S\subseteq\mathcal{N}\setminus\{i\}$. Hence, +\begin{align*} + \partial_i F(\lambda) + & \geq \frac{1}{4} + \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + P_{\mathcal{N}}^\lambda(S) + \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\ + &\hspace{-3.5em}+\frac{1}{4} + \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + P_{\mathcal{N}}^\lambda(S\cup\{i\}) + \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\ + &\geq \frac{1}{4} + \sum_{S\subseteq\mathcal{N}} + P_\mathcal{N}^\lambda(S) + \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big). +\end{align*} +Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq +\norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$. +Hence, +\begin{displaymath} + \partial_i F(\lambda) \geq + \frac{1}{4} + \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i. +\end{displaymath} +Finally, using that the inverse is a matrix convex function over symmetric +positive definite matrices: +\begin{displaymath} + \partial_i F(\lambda) \geq + \frac{1}{4} + \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i + = \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i + = \frac{1}{2} + \partial_i L(\lambda). +\end{displaymath} -Having bound the ratio between the partial derivatives, we now bound the ratio $F(\lambda)/L(\lambda)$ from below. Consider the following cases. - First, if the minimum of the ratio - $F(\lambda)/L(\lambda)$ is attained at a point interior to the hypercube, then it is - a critical point, \emph{i.e.}, $\partial_i \big(F(\lambda)/L(\lambda)\big)=0$ for all $i\in \mathcal{N}$; hence, at such a critical point: - \begin{equation}\label{eq:lhopital} - \frac{F(\lambda)}{L(\lambda)} - = \frac{\partial_i F(\lambda)}{\partial_i - L(\lambda)} \geq \frac{1}{2}. - \end{equation} - Second, if the minimum is attained as - $\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write: - \begin{displaymath} - \frac{F(\lambda)}{L(\lambda)} - \sim_{\lambda\rightarrow 0} - \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F(0)} - {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L(0)} - \geq \frac{1}{2}, - \end{displaymath} - \emph{i.e.}, the ratio $\frac{F(\lambda)}{L(\lambda)}$ is necessarily bounded from below by 1/2 for small enough $\lambda$. - Finally, if the minimum is attained on a face of the hypercube $[0,1]^n$ (a face is - defined as a subset of the hypercube where one of the variable is fixed to - 0 or 1), without loss of generality, we can assume that the minimum is - attained on the face where the $n$-th variable has been fixed - to 0 or 1. Then, either the minimum is attained at a point interior to the - face or on a boundary of the face. In the first sub-case, relation - \eqref{eq:lhopital} still characterizes the minimum for $i< n$. - In the second sub-case, by repeating the argument again by induction, we see - that all is left to do is to show that the bound holds for the vertices of - the cube (the faces of dimension 1). The vertices are exactly the binary - points, for which we know that both relaxations are equal to the value - function $V$. Hence, the ratio is equal to 1 on the vertices. +Having bound the ratio between the partial derivatives, we now bound the ratio +$F(\lambda)/L(\lambda)$ from below. Consider the following cases. + +First, if the minimum is attained as $\lambda$ converges to zero in, +\emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write: +\begin{displaymath} + \frac{F(\lambda)}{L(\lambda)} + \sim_{\lambda\rightarrow 0} + \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F(0)} + {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L(0)} + \geq \frac{1}{2}, +\end{displaymath} +\emph{i.e.}, the ratio $\frac{F(\lambda)}{L(\lambda)}$ is necessarily bounded +from below by 1/2 for small enough $\lambda$. + +Second, if the minimum of the ratio $F(\lambda)/L(\lambda)$ is attained at +a vertex of the hypercube $[0,1]^n$ different from 0. $F$ and $L$ being +relaxations of the value function $V$, they are equal to $V$ on the vertices +which are exactly the binary points. Hence the minimum is equal to 1 in this +case. In particular it is greater than $1/2$. + +Finally, if the minimum is attained at a point $\lambda^*$ with at least one +coordinate belonging to $(0,1)$, let $i$ be one such coordinate and consider +the function $G_i$: +\begin{displaymath} + G_i: x \mapsto \frac{F}{L}(\lambda_1^*,\ldots,\lambda_{i-1}^*, x, + \lambda_{i+1}^*, \ldots, \lambda_n^*). +\end{displaymath} +Then this function attains a minimum at $\lambda^*_i\in(0,1)$ and its +derivative is zero at this point. Hence: +\begin{displaymath} + 0 = G_i'(\lambda^*_i) = \partial_i\left(\frac{F}{L}\right)(\lambda^*) +\end{displaymath}. +But $\partial_i(F/L)(\lambda^*)=0$ implies that +\begin{displaymath} + \frac{F(\lambda^*)}{L(\lambda^*)} = \frac{\partial_i + F(\lambda^*)}{\partial_i L(\lambda^*)}\geq \frac{1}{2} +\end{displaymath} +using the lower bound on the ratio of the partial derivatives. This concludes +the proof of the lemma. \end{proof} We now prove that $F$ admits the following exchange property: let diff --git a/approximation.tex b/approximation.tex index 81a6d0c..23dc212 100644 --- a/approximation.tex +++ b/approximation.tex @@ -23,7 +23,7 @@ problem with a constant approximation ratio to \EDP{} (Proposition~\ref{prop:relaxation}) and then showing how to approximately solve this problem in a monotone way. -\subsection{A concave relaxation of \EDP}\label{sec:concave} +\subsection{A Concave Relaxation of \EDP}\label{sec:concave} A classical way of relaxing combinatorial optimization problems is \emph{relaxing by expectation}, using the so-called \emph{multi-linear} @@ -87,7 +87,7 @@ proposition which is also proved in the Appendix. $L^*_c \leq 2 OPT + 2\max_{i\in\mathcal{N}}V(i)$. \end{proposition} -\subsection{Solving a convex problem monotonously}\label{sec:monotonicity} +\subsection{Solving a Convex Problem Monotonously}\label{sec:monotonicity} Note, that the feasible set in Problem~\eqref{eq:primal} increases (for the inclusion) when the cost decreases. As a consequence, $c\mapsto L^*_c$ is @@ -31,7 +31,7 @@ \section{Preliminaries}\label{sec:peel} \input{problem} -\section{Approximation results}\label{sec:approximation} +\section{Approximation Results}\label{sec:approximation} \input{approximation} \section{Mechanism for \SEDP{}}\label{sec:mechanism} \input{main} diff --git a/proofs.tex b/proofs.tex deleted file mode 100644 index e69de29..0000000 --- a/proofs.tex +++ /dev/null |
