summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-11-04 17:57:10 -0800
committerStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-11-04 17:57:10 -0800
commit36e95cddab11a42e9e2893e534d2f74aed76b876 (patch)
tree2c45ce9c8bf290f9d9020c397d2156ce5aa3988e
parent2befde8163f17a70c698a9ab099043ef2c76d8a0 (diff)
parent2a4664283998d5bf9c6615d251fd62c30001b73e (diff)
downloadrecommendation-36e95cddab11a42e9e2893e534d2f74aed76b876.tar.gz
Merge branch 'master' of ssh://74.95.195.229:1444/git/data_value
-rw-r--r--general.tex6
-rw-r--r--notes.bib32
2 files changed, 35 insertions, 3 deletions
diff --git a/general.tex b/general.tex
index 4f9aaad..550d6b7 100644
--- a/general.tex
+++ b/general.tex
@@ -79,13 +79,13 @@ The value function given by the information gain \eqref{general} is submodular.
\end{lemma}
\begin{proof}
-The theorem is proved in a slightly different context in \cite{guestrin}; we
+The theorem is proved in a slightly different context in \cite{krause2005near}; we
repeat the proof here for the sake of completeness. Using the chain rule for
the conditional entropy we get:
-\begin{displaymath}\label{eq:chain-rule}
+\begin{equation}\label{eq:chain-rule}
V(S) = H(y_S) - H(y_S \mid \beta)
= H(y_S) - \sum_{i\in S} H(y_i \mid \beta)
-\end{displaymath}
+\end{equation}
where the second equality comes from the independence of the $y_i$'s
conditioned on $\beta$. Recall that the joint entropy of a set of random
variables is a submodular function. Thus, our value function is written in
diff --git a/notes.bib b/notes.bib
index b9eb5c2..d6f188d 100644
--- a/notes.bib
+++ b/notes.bib
@@ -498,3 +498,35 @@
bibsource = {DBLP, http://dblp.uni-trier.de}
}
+@inproceedings{krause2005near,
+ author = {Andreas Krause and
+ Carlos Guestrin},
+ title = {Near-optimal Nonmyopic Value of Information in Graphical
+ Models},
+ booktitle = {UAI},
+ year = {2005},
+ pages = {324-331},
+ ee = {http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1{\&}smnu=2{\&}article_id=1238{\&}proceeding_id=21},
+ crossref = {DBLP:conf/uai/2005},
+ bibsource = {DBLP, http://dblp.uni-trier.de}
+}
+
+@proceedings{DBLP:conf/uai/2005,
+ title = {UAI '05, Proceedings of the 21st Conference in Uncertainty
+ in Artificial Intelligence, Edinburgh, Scotland, July 26-29,
+ 2005},
+ booktitle = {UAI},
+ publisher = {AUAI Press},
+ year = {2005},
+ isbn = {0-9749039-1-4},
+ bibsource = {DBLP, http://dblp.uni-trier.de}
+}
+
+@book{hastie,
+ title={The elements of statistical learning},
+ author={Friedman, J. and Hastie, T. and Tibshirani, R.},
+ volume={1},
+ year={2001},
+ publisher={Springer Series in Statistics}
+}
+