diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-07-06 21:58:31 -0700 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-07-06 21:58:31 -0700 |
| commit | a8038aaa6c32a43e95b2730a3b8f63a286193a09 (patch) | |
| tree | 670f286749cc433b7d3ef273c5a960c0478e4e2c /appendix.tex | |
| parent | 6f255bcbe303748bfface378be199cb9d9b5012f (diff) | |
| download | recommendation-a8038aaa6c32a43e95b2730a3b8f63a286193a09.tar.gz | |
moved algo to appendix
Diffstat (limited to 'appendix.tex')
| -rw-r--r-- | appendix.tex | 91 |
1 files changed, 65 insertions, 26 deletions
diff --git a/appendix.tex b/appendix.tex index 5dce278..0f6e6b4 100644 --- a/appendix.tex +++ b/appendix.tex @@ -214,7 +214,7 @@ the proof of the lemma. \qed \end{displaymath} which is positive by submodularity of $V$. Hence, the maximum of $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is - attained at one of its limit, at which either the $i$-th or $j$-th component of + attained at one of its limits, at which either the $i$-th or $j$-th component of $\lambda_\varepsilon$ becomes integral. \qed %\end{proof} \subsection{Proof of Proposition~\ref{prop:relaxation}}\label{proofofproprelaxation} @@ -469,12 +469,12 @@ the inner inequality follows from Lemma~\ref{lemma:monotonicity}. \item the accuracy of the approximation $\hat{L}^*_{c,\alpha}$ is: \begin{displaymath} - A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2B)} + \varepsilon' =\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2B)} \end{displaymath} Note that: \begin{displaymath} - \log\log A^{-1} = O\bigg(\log\log\frac{B}{\varepsilon\delta b} + \log n\bigg) + \log\log (\varepsilon')^{-1} = O\bigg(\log\log\frac{B}{\varepsilon\delta b} + \log n\bigg) \end{displaymath} Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed \end{enumerate} @@ -482,7 +482,7 @@ Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed \section{Budget Feasible Reverse Auction Mechanisms}\label{app:budgetfeasible} We review in this appendix the formal definition of a budget feasible reverse auction mechanisms, as introduced by \citeN{singer-mechanisms}. We depart from the definitions in \cite{singer-mechanisms} only in considering $\delta$-truthful, rather than truthful, mechanisms. -Given a budget $B$ and a value function $V:2^{\mathcal{N}}\to\reals_+$, a \emph{mechanism} $\mathcal{M} = (S,p)$ comprises (a) an \emph{allocation function}\footnote{Note that $S$ would be more aptly termed as a \emph{selection} function, as this is a reverse auction, but we retain the term ``allocation'' to align with the familiar term from standard auctions.} +Given a budget $B$ and a value function $V:2^{\mathcal{N}}\to\reals_+$, a \emph{mechanism} $\mathcal{M} = (S,p)$ comprises (a) an \emph{allocation function} $S:\reals_+^n \to 2^\mathcal{N}$ and (b) a \emph{payment function} $p:\reals_+^n\to \reals_+^n$. Let $s_i(c) = \id_{i\in S(c)}$ be the binary indicator of $i\in S(c)$. We seek mechanisms that have the following properties \cite{singer-mechanisms}: @@ -516,8 +516,48 @@ Formally, there must exist some $\alpha\geq 1$ \section{Proof of Theorem~\ref{thm:main}}\label{sec:proofofmainthm} +\begin{algorithm}[!t] + \caption{Mechanism for \SEDP{}}\label{mechanism} + \begin{algorithmic}[1] + %\State $\mathcal{N} \gets \mathcal{N}\setminus\{i\in\mathcal{N} : c_i > B\}$ + \Require{ $B\in \reals_+$,$c\in[0,B]^n$, $\delta\in (0,1]$, $\epsilon\in (0,1]$ } + \State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$ + \State \label{relaxexec}$OPT'_{-i^*} \gets$ using Proposition~\ref{prop:monotonicity}, + compute a $\varepsilon$-accurate, $\delta$-decreasing + approximation of $$\textstyle L^*_{c_{-i^*}}\defeq\max_{\lambda\in[0,1]^{n}} \{L(\lambda) + \mid \lambda_{i^*}=0,\sum_{i \in \mathcal{N}\setminus\{i^*\}}c_i\lambda_i\leq B\}$$ + %\Statex + \State $C \gets \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}$ + + \If{$OPT'_{-i^*} < C \cdot V(i^*)$} \label{c} + \State \textbf{return} $\{i^*\}$ + \Else + \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$ + \State $S_G \gets \emptyset$ + \While{$c_i\leq \frac{B}{2}\frac{V(S_G\cup\{i\})-V(S_G)}{V(S_G\cup\{i\})}$} + \State $S_G \gets S_G\cup\{i\}$ + \State $i \gets \argmax_{j\in\mathcal{N}\setminus S_G} + \frac{V(S_G\cup\{j\})-V(S_G)}{c_j}$ + \EndWhile + \State \textbf{return} $S_G$ + \EndIf + \end{algorithmic} +\end{algorithm} + + +We now present the proof of Theorem~\ref{thm:main}. +Our mechanism for \EDP{} is composed of +(a) the allocation function presented in Algorithm~\ref{mechanism}, and +(b) the payment function which pays each allocated agent $i$ her threshold +payment as described in Myerson's Theorem. In the case where $\{i^*\}$ is the +allocated set, her threshold payment is $B$. %(she would be have been dropped on +%line 1 of Algorithm~\ref{mechanism} had she reported a higher cost). +A closed-form formula for threshold payments when $S_G$ is the allocated set can +be found in~\cite{singer-mechanisms}. + + +We use the notation $OPT_{-i^*}$ to denote the optimal value of \EDP{} when the maximum value element $i^*$ is excluded. We also use $OPT'_{-i^*}$ to denote the approximation computed by the $\delta$-decreasing, $\epsilon$-accurate approximation of $L^*_{c_{-i^*}}$, as defined in Algorithm~\ref{mechanism}. -We now present the proof of Theorem~\ref{thm:main}. We use the notation $OPT_{-i^*}$ to denote the optimal value of \EDP{} when the maximum value element $i^*$ is excluded. We also use $OPT'_{-i^*}$ the approximation computed by the $\delta$-decreasing, $\epsilon$-accurate approximation of $L^*_{c_{-i^*}}$, as defined in Algorithm~\ref{mechanism}. The properties of $\delta$-truthfulness and individual rationality follow from $\delta$-monotonicity and threshold @@ -574,7 +614,7 @@ implies that the threshold payment of user $i$ is bounded by the above quantity. %\end{displaymath} Hence, the total payment is bounded by the telescopic sum: \begin{displaymath} - \sum_{i\in S_G} \frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} B = \frac{V(S_G)-V(\emptyset)}{V(S_G)} B=B\qed + \sum_{i\in S_G} \frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} B = \frac{V(S_G)-V(\emptyset)}{V(S_G)} B=B\qedhere \end{displaymath} \end{proof} @@ -589,7 +629,6 @@ The complexity of the mechanism is given by the following lemma. The value function $V$ in \eqref{modified} can be computed in time $O(\text{poly}(n, d))$ and the mechanism only involves a linear number of queries to the function $V$. - By Proposition~\ref{prop:monotonicity}, line 3 of Algorithm~\ref{mechanism} can be computed in time $O(\text{poly}(n, d, \log\log \frac{B}{b\varepsilon\delta}))$. Hence the allocation @@ -626,26 +665,25 @@ OPT \leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\! + \! \varepsilon . \end{equation} -To see this, let $L^*_{-i^*}$ be the true maximum value of $L$ subject to -$\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line -3 of Algorithm~\ref{mechanism}, we have -$L^*_{-i^*}-\varepsilon\leq OPT_{-i^*}' \leq L^*_{-i^*}+\varepsilon$. +To see this, let $L^*_{c_{-i^*}}$ be the true maximum value of $L$ subject to +$\lambda_{c_{-i^*}}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line +\ref{relaxexec} of Algorithm~\ref{mechanism}, we have +$L^*_{c_{-i^*}}-\varepsilon\leq OPT_{-i^*}' \leq L^*_{c_{-i^*}}+\varepsilon$. -If the condition on line 4 of the algorithm holds, then +If the condition on line \ref{c} of the algorithm holds then, from the lower bound in Proposition~\ref{prop:relaxation}, \begin{displaymath} - V(i^*) \geq \frac{1}{C}L^*_{-i^*}-\frac{\varepsilon}{C} \geq + V(i^*) \geq \frac{1}{C}L^*_{c_{-i^*}}-\frac{\varepsilon}{C} \geq \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}. \end{displaymath} -Indeed, $L^*_{-i^*}\geq OPT_{-i^*}$ as $L$ is a fractional relaxation of $V$. Also, $OPT \leq OPT_{-i^*} + V(i^*)$, +Also, $OPT \leq OPT_{-i^*} + V(i^*)$, hence, \begin{equation}\label{eq:bound1} OPT\leq (1+C)V(i^*) + \varepsilon. \end{equation} - -If the condition does not hold, by observing that $L^*_{-i^*}\leq L^*_c$ and -applying Proposition~\ref{prop:relaxation}, we get +If the condition on line \ref{c} does not hold, by observing that $L^*_{c_{-i^*}}\leq L^*_c$ and +the upper bound of Proposition~\ref{prop:relaxation}, we get \begin{displaymath} - V(i^*)\leq \frac{1}{C}L^*_{-i^*} + \frac{\varepsilon}{C} + V(i^*)\leq \frac{1}{C}L^*_{c_{-i^*}} + \frac{\varepsilon}{C} \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}. \end{displaymath} Applying Lemma~\ref{lemma:greedy-bound}, @@ -653,7 +691,7 @@ Applying Lemma~\ref{lemma:greedy-bound}, V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G) + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}. \end{displaymath} -Thus, if $C$ is such that $C(e-1) -6e +2 > 0$, +Note that $C$ satifies $C(e-1) -6e +2 > 0$, hence \begin{align*} V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G) + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}. @@ -664,18 +702,19 @@ Finally, using Lemma~\ref{lemma:greedy-bound} again, we get \frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}\right) V(S_G) + \frac{2e\varepsilon}{C(e-1)- 6e + 2}. \end{equation} -To minimize the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1} -and \eqref{eq:bound2} respectively, we wish to chose $C$ that minimizes +Our choice of $C$, namely, +\begin{equation}\label{eq:constant} + C = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}, +\end{equation} + is precisely to minimize the maximum among the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1} +and \eqref{eq:bound2}, respectively. Indeed, consider: \begin{displaymath} \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2} \right)\right). \end{displaymath} This function has two minima, only one of those is such that $C(e-1) -6e -+2 \geq 0$. This minimum is -\begin{equation}\label{eq:constant} - C = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}. -\end{equation} -For this minimum, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$ ++2 \geq 0$. This minimum is precisely \eqref{eq:constant}. +For this minimum, $\frac{2e\varepsilon}{C(e-1)- 6e + 2}\leq \varepsilon.$ Placing the expression of $C$ in \eqref{eq:bound1} and \eqref{eq:bound2} gives the approximation ratio in \eqref{approxbound}, and concludes the proof of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed |
