diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2013-09-22 18:28:41 -0400 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2013-09-22 18:28:41 -0400 |
| commit | c7ca7fb461ec2044f8aefcedfcd903d8b5945fc1 (patch) | |
| tree | edab2ce716cf642bebbef2c7902c4a322e8fc03b /approximation.tex | |
| parent | 560eb3da4a23ed3317f8678688f2a55fc7d3c1bf (diff) | |
| download | recommendation-6126915e9bc2122e272da33c51d09e2865b39718.tar.gz | |
Last fixesLATIN
Diffstat (limited to 'approximation.tex')
| -rwxr-xr-x | approximation.tex | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/approximation.tex b/approximation.tex index 901e1dd..dc39e5b 100755 --- a/approximation.tex +++ b/approximation.tex @@ -127,8 +127,8 @@ In other words, $f$ is $\delta$-decreasing if increasing any coordinate by $\del \begin{proposition}\label{prop:monotonicity} For any $\delta\in(0,1]$ and any $\varepsilon\in(0,1]$, - there exists an algorithm computes a $\delta$-decreasing, + there exists an algorithm which computes a $\delta$-decreasing, $\varepsilon$-accurate approximation of $L^*_c$. The running time of the algorithm is $O\big(poly(n, d, \log\log\frac{B}{b\varepsilon\delta})\big)$. \end{proposition} -The proof and the algorithm (Algorithm~\ref{alg:monotone}) are in Appendix~\ref{proofofproprelaxation}. +The proof and the algorithm (Algorithm~\ref{alg:monotone}) are in Appendix~\ref{proofofpropmonotonicity}. |
