summaryrefslogtreecommitdiffstats
path: root/main.tex
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2012-11-22 17:14:24 +0100
committerThibaut Horel <thibaut.horel@gmail.com>2012-11-22 17:14:24 +0100
commit6914bc40cecb0cf3bacbe8bf44f8fb1bfb5d690b (patch)
tree38819ab078b30ce869cb8213ace942acb7f75363 /main.tex
parenta90b10d4653eb81c2647fa1b267dadc0a9fcacd8 (diff)
downloadrecommendation-6914bc40cecb0cf3bacbe8bf44f8fb1bfb5d690b.tar.gz
Typos. There was an error in the proof of lemma 4. Fixing this error changes our
approximation ratio to 12.98 instead of 19.68...
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex49
1 files changed, 24 insertions, 25 deletions
diff --git a/main.tex b/main.tex
index 8937f04..8fb9666 100644
--- a/main.tex
+++ b/main.tex
@@ -92,7 +92,7 @@ $\id_S$ denotes the indicator vector of $S$. The optimization program
\leq B\right\}\label{relax}
\end{align}
Substituting $OPT'_{-i^*}$ for $OPT_{-i^*}$ like before works for specific problems like \textsc{Knapsack}~\cite{chen} and
-\textsc{Coverage}~\cite{singer-influence}. For other instances of sub modular function, this overall technology
+\textsc{Coverage}~\cite{singer-influence}. For other instances of submodular function, this overall technology
has to be applied and extended.
\end{itemize}
@@ -257,9 +257,9 @@ We can now state our main result:
\log\log \varepsilon^{-1})\right)$ and returns a set $S^*$ such that:
\begin{align*}
OPT
- & \leq \frac{14e-3 + \sqrt{160e^2-48e + 9}}{2(e-1)} V(S^*)+
+ & \leq \frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)} V(S^*)+
\varepsilon\\
- & \simeq 19.68V(S^*) + \varepsilon
+ & \simeq 12.98V(S^*) + \varepsilon
\end{align*}
\end{theorem}
@@ -296,7 +296,7 @@ contribution; the proof of this lemma can be found in Section~\ref{sec:relaxatio
$O(\text{poly}(n, d))$ and the mechanism only involves a linear
number of queries to the function $V$.
The function $\log\det$ is concave and self-concordant (see
- \cite{boyd2004convex}), so for any $\varepsilon$, its maximum can be find
+ \cite{boyd2004convex}), so for any $\varepsilon$, its maximum can be found
to a precision $\varepsilon$ in $O(\log\log\varepsilon^{-1})$ of iterations of Newton's method. Each iteration can be
done in time $O(\text{poly}(n, d))$. Thus, line 3 of
Algorithm~\ref{mechanism} can be computed in time
@@ -315,7 +315,7 @@ following lemma which establishes that $OPT'$, the optimal value \eqref{relax}
is not too far from $OPT$.
\begin{lemma}\label{lemma:relaxation}
%\begin{displaymath}
- $ OPT' \leq 4 OPT
+ $ OPT' \leq 2 OPT
+ 2\max_{i\in\mathcal{N}}V(i)$
%\end{displaymath}
\end{lemma}
@@ -331,7 +331,7 @@ Using Lemma~\ref{lemma:relaxation} we can complete the proof of Theorem~\ref{thm
$\varepsilon$, then the set $S^*$ allocated by the mechanism is such that:
\begin{align}
OPT
- \leq \frac{14e\!-\!3 + \sqrt{160e^2\!-\!48e\!+\!9}}{2(e\!-\!1)} V(S^*)\!+\! \varepsilon \label{approxbound}
+ \leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\!+\! \varepsilon \label{approxbound}
\end{align}
%\end{lemma}
To see this, let $OPT_{-i^*}'$ be the true maximum value of $L$ subject to $\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. Assume that on line 3 of algorithm~\ref{mechanism}, a quantity
@@ -355,39 +355,39 @@ Using Lemma~\ref{lemma:relaxation} we can complete the proof of Theorem~\ref{thm
from Lemmas \ref{lemma:relaxation} and \ref{lemma:greedy-bound}:
\begin{align*}
V(i^*) & \stackrel{}\leq \frac{1}{C}OPT_{-i^*}'+ \frac{\varepsilon}{C}\leq \frac{1}{C}
- \big(4 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}\\
- & \leq \frac{1}{C}\left(\frac{4e}{e-1}\big(3 V(S_G)
+ \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}\\
+ & \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G)
+ 2 V(i^*)\big)
+ 2 V(i^*)\right) + \frac{\varepsilon}{C}
\end{align*}
- Thus, if $C$ is such that $C(e-1) -10e +2 > 0$,
+ Thus, if $C$ is such that $C(e-1) -6e +2 > 0$,
\begin{align*}
- V(i^*) \leq \frac{12e}{C(e-1)- 10e + 2} V(S_G)
- + \frac{(e-1)\varepsilon}{C(e-1)- 10e + 2}
+ V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G)
+ + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}
\end{align*}
Finally, using again Lemma~\ref{lemma:greedy-bound}, we get:
\begin{multline}\label{eq:bound2}
- OPT(V, \mathcal{N}, B) \leq \frac{3e}{e-1}\left( 1 + \frac{8e}{C
- (e-1) -10e +2}\right) V(S_G)\\
- +\frac{2e\varepsilon}{C(e-1)- 10e + 2}
+ OPT(V, \mathcal{N}, B) \leq \frac{3e}{e-1}\left( 1 + \frac{4e}{C
+ (e-1) -6e +2}\right) V(S_G)\\
+ +\frac{2e\varepsilon}{C(e-1)- 6e + 2}
\end{multline}
To minimize the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1} and \eqref{eq:bound2} respectively,
we wish to chose for $C=C^*$ such that:
\begin{displaymath}
C^* = \argmin_C
- \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C (e-1) -10e +2}
+ \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}
\right)\right)
\end{displaymath}
- This equation has two solutions. Only one of those is such that:
- $ C(e-1) -10e +2 \geq 0$.
+ This equation has two solutions. Only one of those is such that
+ $C(e-1) -6e +2 \geq 0$.
%which is needed in the above derivation.
This solution is:
\begin{align}
- C^* = \frac{12e-1 + \sqrt{160e^2-48e + 9}}{2(e-1)} \label{eq:c}
+ C^* = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)} \label{eq:c}
\end{align}
For this solution,
% \begin{displaymath}
- $ \frac{2e\varepsilon}{C^*(e-1)- 10e + 2}\leq \varepsilon. $
+ $ \frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon. $
% \end{displaymath}
Placing the expression of $C^*$ in \eqref{eq:bound1} and \eqref{eq:bound2}
gives the approximation ratio in \eqref{approxbound}, and concludes the proof of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed
@@ -436,7 +436,7 @@ if we define:
- e_j)\big)
\end{displaymath}
where $e_i$ and $e_j$ are two vectors of the standard basis of
-$\reals^{n}$, then $\tilde{F}$ is convex. Hence its maximum over the interval:
+$\reals^{n}$, then $\tilde{F}_\lambda$ is convex. Hence its maximum over the interval:
\begin{displaymath}
I_\lambda = \Big[\max(-\lambda_i,\lambda_j-1), \min(1-\lambda_i, \lambda_j)\Big]
\end{displaymath}
@@ -444,7 +444,7 @@ is attained at one of the boundaries of $I_\lambda$ for which one of the $i$-th
or the $j$-th component of $\lambda$ becomes integral.
The lemma below proves that we can similarly trade a fractional component for
-an other until one of them becomes integral \emph{while maintaining the
+another until one of them becomes integral \emph{while maintaining the
feasibility of the point at which $F$ is evaluated}. Here, by feasibility of
a point $\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n \lambda_i c_i \leq B$.
\begin{lemma}[Rounding]\label{lemma:rounding}
@@ -697,14 +697,13 @@ Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that $L(\lambda^*)
\end{equation}
Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
- Using the fact that $F$ is linear with respect to the $i$-th
- component and is a relaxation of the value function, we get:
+ By definition of the multi-linear extension $F$:
\begin{displaymath}
- F(\bar{\lambda}) = V(S) +\lambda_i V(S\cup\{i\})
+ F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\})
\end{displaymath}
Using the submodularity of $V$:
\begin{displaymath}
- F(\bar{\lambda}) \leq 2 V(S) + V(i)
+ F(\bar{\lambda}) \leq V(S) + V(i)
\end{displaymath}
Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
$V(S)\leq OPT$. Hence: