summaryrefslogtreecommitdiffstats
path: root/notes.bib
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2012-02-07 16:11:47 -0800
committerThibaut Horel <thibaut.horel@gmail.com>2012-02-07 16:11:47 -0800
commitba98a0b27361cb0987fb8c911d256dd1c919f269 (patch)
tree60764dccba5ec6365a10027a88ef5e479948391b /notes.bib
parentadb3db4935fcb7d2c1e26927bdb83265ad964807 (diff)
downloadrecommendation-ba98a0b27361cb0987fb8c911d256dd1c919f269.tar.gz
Analysis of the submodularity with quadratic form theory.
Add a paper from Richardson on LSE.
Diffstat (limited to 'notes.bib')
-rw-r--r--notes.bib19
1 files changed, 19 insertions, 0 deletions
diff --git a/notes.bib b/notes.bib
index 785cf1e..db41d54 100644
--- a/notes.bib
+++ b/notes.bib
@@ -149,3 +149,22 @@
year={1950},
publisher={JSTOR}
}
+
+@article{lse,
+ jstor_articletype = {research-article},
+ title = {Least Squares and Grouping Method Estimators in the Errors in Variables Model},
+ author = {Richardson, David H. and Wu, De-Min},
+ journal = {Journal of the American Statistical Association},
+ jstor_issuetitle = {},
+ volume = {65},
+ number = {330},
+ jstor_formatteddate = {Jun., 1970},
+ pages = {pp. 724-748},
+ url = {http://www.jstor.org/stable/2284583},
+ ISSN = {01621459},
+ abstract = {The probability density function of the least squares estimator of the slope coefficient in the errors in variables model is presented. It is shown how the bias and mean-square error of the least squares estimator b depend on the parameters of the model. In particular, for a given sample size, b converges to the true parameter as one of the distribution parameters increased indefinitely. The analysis is supplemented with numerical computations of the relative bias and mean-square error. The distribution function of the grouping method estimator b̄ has the same form as that of b. The biases and mean-square errors of b and b̄ are compared. For the case of zero within-group variance, the use of b̄ always reduces the magnitude of the relative bias and generally reduces the mean-square error. For large values of the within-group variance, use of b̄ may result in an increase in mean-square error.},
+ language = {English},
+ year = {1970},
+ publisher = {American Statistical Association},
+ copyright = {Copyright © 1970 American Statistical Association},
+ }