diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-02-11 15:49:50 -0800 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-02-11 15:49:50 -0800 |
| commit | 05da1a98508fdc6a7e2745d7dc649ccfb921edee (patch) | |
| tree | d71bf5b7707239d66cac92ff0f7e93819f18b116 /problem.tex | |
| parent | ec9b831af5c4e953e6000485380c591b3d7ad965 (diff) | |
| download | recommendation-05da1a98508fdc6a7e2745d7dc649ccfb921edee.tar.gz | |
general
Diffstat (limited to 'problem.tex')
| -rw-r--r-- | problem.tex | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/problem.tex b/problem.tex index 536481a..d505280 100644 --- a/problem.tex +++ b/problem.tex @@ -77,8 +77,8 @@ prior covariance is the identity matrix, \emph{i.e.}, $R=I_d\in \reals^{d\times d}.$ Intuitively, this corresponds to the simplest prior, in which no direction of $\reals^d$ is a priori favored; equivalently, it also corresponds to the case where ridge regression estimation \eqref{ridge} performed by $\E$ has -a penalty term $\norm{\beta}_2^2$. A generalization of our results to general -matrices $R$ can be found in Section~\ref{sec:ext}. +a penalty term $\norm{\beta}_2^2$. A generalization of our results to arbitrary +covariance matrices $R$ can be found in Section~\ref{sec:ext}. %Note that \eqref{dcrit} is a submodular set function, \emph{i.e.}, %$V(S)+V(T)\geq V(S\cup T)+V(S\cap T)$ for all $S,T\subseteq \mathcal{N}$; it is also monotone, \emph{i.e.}, $V(S)\leq V(T)$ for all $S\subset T$. |
