summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--main.tex153
1 files changed, 95 insertions, 58 deletions
diff --git a/main.tex b/main.tex
index f7b17f4..048552e 100644
--- a/main.tex
+++ b/main.tex
@@ -72,7 +72,6 @@ $R_\mathcal{N}(\mathbf{1}_S) = V(S)$. The optimization program
\leq B\right\}
\end{displaymath}
-
A relaxation which is commonly used, due to its well-behaved properties in the
context of maximizing submodular functions, is the \emph{multi-linear}
extension:
@@ -111,13 +110,14 @@ in the above formula:
&= \log\det\left(I_d + \sum_{i\in\mathcal{N}}
\lambda_i x_i\T{x_i}\right)
\end{align}
-This function is well-known to be concave (see \emph{e.g.}
-\cite{boyd2004convex}). Hence, its maximum value can be computed in polynomial
-time (TODO elaborate) and can be used as a threshold rule in our mechanism.
-The main challenge will be to prove that $OPT(L_\mathcal{N}, B)$ is close to
-$V(S_G)$. To do so, our main technical contribution is to prove that
-$L_\mathcal{N}$ has a bounded approximation ratio to the value function $V$
-(lemma~\ref{lemma:relaxation}).
+This function is well-known to be concave and even self-concordant (see \emph{e.g.}
+\cite{boyd2004convex}). In this case, the analysis of Newton's method for
+self-concordant functions in \cite{boyd2004convex}, shows that it is possible
+to find the maxmimum of $L_\mathcal{N}$ to any precision $\varepsilon$ in
+a number of iterations $O(\log\log\varepsilon^{-1})$. The main challenge will
+be to prove that $OPT(L_\mathcal{N}, B)$ is close to $V(S_G)$. To do so, our
+main technical contribution is to prove that $L_\mathcal{N}$ has a bounded
+approximation ratio to the value function $V$ (lemma~\ref{lemma:relaxation}).
The mechanism for \EDP{} is presented in algorithm \ref{mechanism}.
\begin{algorithm}
@@ -144,15 +144,16 @@ The mechanism for \EDP{} is presented in algorithm \ref{mechanism}.
We can now state the main result of this section:
\begin{theorem}\label{thm:main}
- The mechanism described in Algorithm~\ref{mechanism} is truthful,
- and budget feasible. Furthermore, choosing:
- \begin{displaymath}
- C = C^* = \frac{12e-1 + \sqrt{160e^2-48e + 9}}{2(e-1)}
- \end{displaymath}
- we get an approximation ratio of:
- \begin{displaymath}
- 1 + C^* = \frac{14e-3 + \sqrt{160e^2-48e + 9}}{2(e-1)}\simeq 19.68
- \end{displaymath}
+ The mechanism described in algorithm~\ref{mechanism} is truthful,
+ and budget feasible. Furthermore, for any $\varepsilon>0$, the mechanism
+ has a complexity $O\left(\text{poly}(|\mathcal{N}|, d,
+ \log\log \varepsilon^{-1})\right)$ and returns a set $S^*$ such that:
+ \begin{align*}
+ OPT(V,\mathcal{N}, B)
+ & \leq \frac{14e-3 + \sqrt{160e^2-48e + 9}}{2(e-1)} V(S^*)+
+ \varepsilon\\
+ & \simeq 19.68V(S^*) + \varepsilon
+ \end{align*}
\end{theorem}
%\stratis{Add lowerbound here too.}
@@ -164,7 +165,6 @@ There is no $2$-approximate, truthful, budget feasible, individionally rational
\stratis{move the proof as appropriate}
\begin{proof}
Suppose, for contradiction, that such a mechanism exists. Consider two experiments with dimension $d=2$, such that $x_1 = e_1=[1 ,0]$, $x_2=e_2=[0,1]$ and $c_1=c_2=B/2+\epsilon$. Then, one of the two experiments, say, $x_1$, must be in the set selected by the mechanism, otherwise the ratio is unbounded, a contradiction. If $x_1$ lowers its value to $B/2-\epsilon$, by monotonicity it remains in the solution; by threshold payment, it is paid at least $B/2+\epsilon$. So $x_2$ is not included in the solution by budget feasibility and individual rationality: hence, the selected set attains a value $\log2$, while the optimal value is $2\log 2$.
-
\end{proof}
\subsection{Proof of theorem~\ref{thm:main}}
@@ -242,25 +242,58 @@ Hence, the total payment is bounded by:
\end{displaymath}
\end{proof}
-\begin{lemma}\label{lemma:approx}
- Let $S^*$ be the set allocated by the mechanism. Let us write:
+\begin{lemma}\label{lemma:complexity}
+ For any $\varepsilon > 0$, the complexity of algorithm~\ref{mechanism} is
+ $O(\text{poly}(|\mathcal{N}|, d, \log\log \varepsilon^{-1}))$.
+\end{lemma}
+
+\begin{proof}
+ The value function $V$ \eqref{modified} can be computed in time
+ $O(\text{poly}(|\mathcal{N}|, d))$ and the mechanism only involves a linear
+ number of queries to the function $V$.
+
+ The function $\log\det$ is concave and self-concordant (see
+ \cite{boyd2004convex}), so for any $\varepsilon$, its maximum can be find
+ to a precision $\varepsilon$ in a number of iterations of Newton's method
+ $O(\log\log\varepsilon^{-1})$. Each iteration of Newton's method can be
+ done in time $O(\text{poly}(|\mathcal{N}|, d))$. Thus, line 2 of
+ algorithm~\ref{mechanism}, can be computed in time
+ $O(\text{poly}(|\mathcal{N}|, d, \log\log \varepsilon^{-1}))$.
+\end{proof}
+
+Finally, we prove the approximation ratio of the mechanism. We use the
+following lemma, which gives an approximation ratio of the function
+$L_\mathcal{N}$. Its proof is our main technical contribution and is done in
+section \ref{sec:relaxation}.
+
+\begin{lemma}\label{lemma:relaxation}
+ We have:
\begin{displaymath}
- C_{\textrm{max}} = \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C
- (e-1) -10e +2}\right)\right)
+ OPT(L_\mathcal{N}, B) \leq 4 OPT(V,\mathcal{N},B)
+ + 2\max_{i\in\mathcal{N}}V(i)
\end{displaymath}
+\end{lemma}
- Then:
+\begin{lemma}\label{lemma:approx}
+ %C_{\textrm{max}} = \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C
+ %(e-1) -10e +2}\right)\right)
+ For any $\varepsilon > 0$, if $L(x^*)$ has been computed to a precision
+ $\varepsilon$, then the set $S^*$ allocated by the mechanism is such that:
\begin{displaymath}
- OPT(V, \mathcal{N}, B) \leq
- C_\text{max}\cdot V(S^*)
+ OPT(V,\mathcal{N}, B)
+ \leq \frac{14e-3 + \sqrt{160e^2-48e + 9}}{2(e-1)} V(S^*)+ \varepsilon
\end{displaymath}
\end{lemma}
\begin{proof}
-
+ We assume that on line 2 of algorithm~\ref{mechanism}, a quantity
+ $\tilde{L}$ such that $\tilde{L}-\varepsilon\leq L(x^*) \leq
+ \tilde{L}+\varepsilon$ has been computed (lemma~\ref{lemma:complexity}
+ states that this can be done in a time within our complexity guarantee).
+
If the condition on line 3 of the algorithm holds, then:
\begin{displaymath}
- V(i^*) \geq \frac{1}{C}L(x^*) \geq
+ V(i^*) \geq \frac{1}{C}L(x^*)-\frac{\varepsilon}{C} \geq
\frac{1}{C}OPT(V,\mathcal{N}\setminus\{i\}, B)
\end{displaymath}
@@ -270,45 +303,57 @@ Hence, the total payment is bounded by:
\end{displaymath}
Hence:
- \begin{displaymath}
- V(i^*) \geq \frac{1}{C+1} OPT(V,\mathcal{N}, B)
- \end{displaymath}
+ \begin{equation}\label{eq:bound1}
+ OPT(V,\mathcal{N}, B)\leq (1+C)V(i^*) + \varepsilon
+ \end{equation}
If the condition of the algorithm does not hold, by applying lemmas
\ref{lemma:relaxation} and \ref{lemma:greedy-bound}:
\begin{align*}
- V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C}
- \big(4 OPT(V,\mathcal{N}, B) + 2 V(i^*)\big)\\
+ V(i^*) & \leq \frac{1}{C}L(x^*) + \frac{\varepsilon}{C}\leq \frac{1}{C}
+ \big(4 OPT(V,\mathcal{N}, B) + 2 V(i^*)\big) + \frac{\varepsilon}{C}\\
& \leq \frac{1}{C}\left(\frac{4e}{e-1}\big(3 V(S_G)
+ 2 V(i^*)\big)
- + V(i^*)\right)
+ + 2 V(i^*)\right) + \frac{\varepsilon}{C}
\end{align*}
Thus:
\begin{align*}
- V(i^*) \leq \frac{12e}{C(e-1)- 10e + 2} V(S_G)
+ V(i^*) \leq \frac{12e}{C(e-1)- 10e + 2} V(S_G)
+ + \frac{(e-1)\varepsilon}{C(e-1)- 10e + 2}
\end{align*}
Finally, using again lemma~\ref{lemma:greedy-bound}, we get:
- \begin{displaymath}
+ \begin{multline}\label{eq:bound2}
OPT(V, \mathcal{N}, B) \leq \frac{3e}{e-1}\left( 1 + \frac{8e}{C
- (e-1) -10e +2}\right) V(S_G)\qed
- \end{displaymath}
-\end{proof}
-
-The optimal value for $C$ is:
-\begin{displaymath}
- C^* = \argmin_C C_{\textrm{max}}
-\end{displaymath}
+ (e-1) -10e +2}\right) V(S_G)\\
+ +\frac{2e\varepsilon}{C(e-1)- 10e + 2}
+ \end{multline}
-This equation has two solutions. Only one of those is such that:
-\begin{displaymath}
- C(e-1) -10e +2 \geq 0
-\end{displaymath}
-which is needed in the proof of the previous lemma. Computing this solution,
-gives the result of the theorem.
+ Looking at \eqref{eq:bound1} and \eqref{eq:bound2}, we see that the optimal
+ value for $C$ is:
+ \begin{displaymath}
+ C^* = \argmin_C
+ \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C (e-1) -10e +2}
+ \right)\right)
+ \end{displaymath}
-\subsection{An approximation ratio for $L_\mathcal{N}$}\label{sec:relaxation}
+ This equation has two solutions. Only one of those is such that:
+ \begin{displaymath}
+ C(e-1) -10e +2 \geq 0
+ \end{displaymath}
+ which is needed in the above derivation. This solution is:
+ \begin{displaymath}
+ C^* = \frac{12e-1 + \sqrt{160e^2-48e + 9}}{2(e-1)}
+ \end{displaymath}
+ For this solution we have:
+ \begin{displaymath}
+ \frac{2e\varepsilon}{C(e-1)- 10e + 2}\leq 1
+ \end{displaymath}
+ Plugging the expression of $C^*$ in \eqref{eq:bound1} and \eqref{eq:bound2}
+ gives the approximation ratio in the lemma's statement.
+\end{proof}
+\subsection{Proof of lemma \ref{lemma:relaxation}}\label{sec:relaxation}
Since $L_\mathcal{N}$ is a relaxation of the value function $V$, we have:
\begin{displaymath}
@@ -552,14 +597,6 @@ i\leq |\mathcal{N}|} \lambda_i c_i \leq B$.
\end{align*}
\end{proof}
-\begin{lemma}\label{lemma:relaxation}
- We have:
- \begin{displaymath}
- OPT(L_\mathcal{N}, B) \leq 4 OPT(V,\mathcal{N},B)
- + 2\max_{i\in\mathcal{N}}V(i)
- \end{displaymath}
-\end{lemma}
-
\begin{proof}
Let us consider a feasible point $\lambda^*\in[0,1]^{|\mathcal{N}|}$ such that $L_\mathcal{N}(\lambda^*)
= OPT(L_\mathcal{N}, B)$. By applying lemma~\ref{lemma:relaxation-ratio}