summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--proof.tex49
1 files changed, 34 insertions, 15 deletions
diff --git a/proof.tex b/proof.tex
index 5c9cb91..c43e5b5 100644
--- a/proof.tex
+++ b/proof.tex
@@ -64,22 +64,41 @@
\subsection{Economics}
-\begin{itemize}
- \item Value function: following the experiment design theory, the value of
- data is the decrease of uncertainty about the model. Common measure of
- uncertainty, the entropy. Thus, the value of a set $S$ of users is:
- \begin{displaymath}
- V(S) = \mathbb{H}(\beta) - \mathbb{H}(\beta|Y_S)
- \end{displaymath}
- where $Y_S = \{y_i,\,i\in S\}$ is the set of observations.
+Value function: following the experiment design theory, the value of
+data is the decrease of uncertainty about the model. Common measure of
+uncertainty, the entropy. Thus, the value of a set $S$ of users is:
+\begin{displaymath}
+ V(S) = \mathbb{H}(\beta) - \mathbb{H}(\beta|Y_S)
+\end{displaymath}
+where $Y_S = \{y_i,\,i\in S\}$ is the set of observations.
- In our case (under Gaussian prior):
- \begin{align*}
- \forall S\subset\mathcal{N},\; V(S)
- & = \frac{1}{2}\log\det\left(I_d
- + \mu\sum_{i\in S} x_ix_i^*\right)\\
- & \defeq \frac{1}{2}\log\det A(S)
- \end{align*}
+In our case (under Gaussian prior):
+\begin{align*}
+ \forall S\subset\mathcal{N},\; V(S)
+ & = \frac{1}{2}\log\det\left(I_d
+ + \mu\sum_{i\in S} x_ix_i^*\right)\\
+ & \defeq \frac{1}{2}\log\det A(S)
+\end{align*}
+
+\begin{lemma}[Marginal contribution]
+ \begin{displaymath}
+ \Delta_i V(S)\defeq V(S\cup\{i\}) - V(S)
+ = \frac{1}{2}\log\left(1 + \mu x_i^*A(S)^{-1}x_i\right)
+ \end{displaymath}
+\end{lemma}
+
+\begin{proof}
+ We have:
+ \begin{align*}
+ V(S\cup\{i\}) & = \frac{1}{2}\log\det A(S\cup\{i\})\\
+ & = \frac{1}{2}\log\det\left(A(S) + \mu x_i x_i^*\right)\\
+ & = V(S) + \frac{1}{2}\log\det\left(I_d + \mu A(S)^{-1}x_i
+ x_i^*\right)\\
+ & = V(S) + \frac{1}{2}\log\left(1 + \mu x_i^* A(S)^{-1}x_i\right)
+ \end{align*}
+ where the last equality comes from Sylvester's determinant formula.
+\end{proof}
+\begin{itemize}
\item each user $i$ has a cost $c_i$
\item the auctioneer has a budget constraint $B$
\item optimisation problem: