summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--main.tex14
-rw-r--r--proofs.tex20
2 files changed, 20 insertions, 14 deletions
diff --git a/main.tex b/main.tex
index 981eb05..fa8558e 100644
--- a/main.tex
+++ b/main.tex
@@ -17,21 +17,13 @@ element $i$ to be included is the one which maximizes the
\end{align}
This is repeated until the sum of costs of elements in $S$ reaches the budget
constraint $B$. Denote by $S_G$ the set constructed by this heuristic and let
-$i^*$ be the element of maximum value. Then, the following lemma holds:
-\begin{lemma}~\cite{chen}\label{lemma:greedy-bound}
-Let $S_G$ be the set computed by the greedy algorithm and let
-$i^* = \argmax_{i\in\mathcal{N}} V(\{i\}).$ We have:
-\begin{displaymath}
-OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big).
-\end{displaymath}
-\end{lemma}
-
-This lemma immediately implies that the following algorithm:
+$i^*=\argmax_{i\in\mathcal{N}} V(\{i\})$ be the element of maximum value. Then,
+the following algorithm:
\begin{equation}\label{eq:max-algorithm}
\textbf{if}\; V(\{i^*\}) \geq V(S_G)\; \textbf{return}\; \{i^*\}
\;\textbf{else return}\; S_G
\end{equation}
-has an approximation ratio of $\frac{5e}{e-1}$.
+has an approximation ratio of $\frac{5e}{e-1}$ \cite{chen}.
\subsection{Submodular Maximization in the Strategic Case}
diff --git a/proofs.tex b/proofs.tex
index 28f13ac..9358a3d 100644
--- a/proofs.tex
+++ b/proofs.tex
@@ -32,13 +32,27 @@ The complexity of the mechanism is given by the following lemma.
\end{proof}
Finally, we prove the approximation ratio of the mechanism. We use the
-following lemma which establishes that $OPT'$, the optimal value \eqref{relax} of the fractional relaxation $L$ under the budget constraints
- is not too far from $OPT$.
+following lemma which establishes that $OPT'$, the optimal value \eqref{relax}
+of the fractional relaxation $L$ under the budget constraints is not too far
+from $OPT$.
\begin{lemma}[Approximation]\label{lemma:relaxation}
$ OPT' \leq 2 OPT
+ 2\max_{i\in\mathcal{N}}V(i)$.
\end{lemma}
-The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution, and can be found in Section \ref{sec:relaxation}.
+The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution,
+and can be found in Section \ref{sec:relaxation}.
+
+We also use the following lemma from \cite{chen} which bounds $OPT$ in terms of
+the value of $S_G$, as computed in Algorithm \ref{mechanism}, and $i^*$, the
+element of maximum value.
+
+\begin{lemma}[\cite{chen}]
+Let $S_G$ be the set computed in Algorithm \ref{mechanism} and let
+$i^*=\argmax_{i\in\mathcal{N}} V(\{i\})$. We have:
+\begin{displaymath}
+OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big).
+\end{displaymath}
+\end{lemma}
Using Lemma~\ref{lemma:relaxation} we can complete the proof of
Theorem~\ref{thm:main} by showing that, for any $\varepsilon > 0$, if