diff options
| -rw-r--r-- | paper.tex | 524 |
1 files changed, 514 insertions, 10 deletions
@@ -186,7 +186,7 @@ Combining \eqref{eq:h1} and \eqref{eq:h2} we get: Finally, we can use Sylvester's determinant theorem to get the result. \end{proof} -It is also interesting to the marginal contribution of a user to a set: the +It is also interesting to look at the marginal contribution of a user to a set: the increase of value induced by adding a user to an already existing set of users. We have the following lemma. @@ -216,6 +216,10 @@ that matrix inversion is decreasing, we see that the marginal contribution of a fixed user is a set decreasing function. This is the \emph{submodularity} of the value function. +TODO? Explain what are the points which are the most valuable : points which +are aligned along directions where the spread over the already existing points +is small. + \subsection{Auction} TODO Explain the optimization problem, why it has to be formulated as an auction @@ -232,16 +236,50 @@ should we introduce the notion of submodularity? \section{Main result} -TODO Explain: +All the budget feasible mechanisms studied recently (TODO ref Singer Chen) +rely on using a greedy heuristic extending the idea of the greedy heuristic for +the knapsack problem. In knapsack, objects are selected based on their +\emph{value-per-cost} ratio. The quantity which plays a similar role for +general submodular functions is the \emph{marginal-contribution-per-cost} +ratio: let us assume that you have already selected a set of points $S$, then +the \emph{marginal-contribution-per-cost} ratio per cost of a new point $i$ is +defined by: +\begin{displaymath} + \frac{V(S\cup\{i\}) - V(S)}{c_i} +\end{displaymath} + +The greedy heuristic then simply repeatedly selects the point whose +marginal-contribution-per-cost ratio is the highest until it reaches the budget +limit. Mechanism considerations aside, this is known to have an unbounded +approximation ratio. However, lemma TODO ref in Chen or Singer shows that the +maximum between the greedy heuristic and the point with maximum value (as +a singleton set) provides a $\frac{5e}{e-1}$ approximation ratio. + +Unfortunately, TODO Singer 2011 points out that taking the maximum between the +greedy heuristic and the most valuable point is not incentive compatible. +Singer and Chen tackle this issue similarly: instead of comparing the most +valuable point to the greedy solution, they compare it to a solution which is +close enough to keep a constant approximation ratio: \begin{itemize} - \item the mechanism uses the greedy heuristic - \item we know that the maximum of greedy and meatiest guy is a good - approximation, but not incentive compatible - \item instead compare the value of the meatiest guy to $L(x^*)$ (introduce - $L(x^*)$ which can be easily computed and is not too far from the greedy - value + \item Chen suggests using $OPT(V,\mathcal{N}\setminus\{i\}, B)$. + Unfortunately, in the general case, this cannot be computed exactly in + polynomial time. + \item Singer uses using the optimal value of a relaxed objective function + which can be proven to be close to the optimal of the original + objective function. The function used is tailored to the specific + problem of coverage. \end{itemize} +Here, we use a relaxation of the objective function which is tailored to the +problem of ridge regression. We define: +\begin{displaymath} + \forall\lambda\in[0,1]^{|\mathcal{N}|}\,\quad L_{\mathcal{N}}(\lambda) \defeq + \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}} \lambda_i x_i x_i^*\right) +\end{displaymath} + +We can now present the mechanism we use, which has a same flavor to Chen's and +Singer's + \begin{algorithm}\label{mechanism} \caption{Mechanism for ridge regression} \begin{algorithmic}[1] @@ -264,9 +302,16 @@ TODO Explain: \end{algorithmic} \end{algorithm} +Notice, that the stopping condition in the while loop is more sophisticated +than just ensuring that the sum of the costs does not exceed the budget. This +is because the selected users will be payed more than their costs, and this +stopping condition ensures budget feasibility when the users are paid their +threshold payment. + +We can now state the main result of this section: \begin{theorem} - The mechanism is truthful, individually rational, budget feasible. - Furthermore, choosing: + The mechanism in \ref{mechanism} is truthful, individually rational, budget + feasible. Furthermore, choosing: \begin{multline*} C = C^* = \frac{5e-1 + C_\mu(2e+1)}{2C_\mu(e-1)}\\ + \frac{\sqrt{C_\mu^2(1+2e)^2 @@ -278,8 +323,467 @@ TODO Explain: + \frac{\sqrt{C_\mu^2(1+2e)^2 + 2C_\mu(14e^2+5e+1) + (1-5e)^2}}{2C_\mu(e-1)} \end{multline*} + where: + \begin{displaymath} + C_\mu = \frac{\log(1+\mu)}{2\mu} + \end{displaymath} \end{theorem} +The proof will consist of the claims of the theorem broken down into lemmas. + +Because the user strategy is parametrized by a single parameter, truthfulness +is equivalent to monotonicity (TODO ref). The proof here is the same as in TODO +and is given for the sake of completeness. + +\begin{lemma} +The mechanism is monotone. +\end{lemma} + +\begin{proof} + We assume by contradiction that there exists a user $i$ that has been + selected by the mechanism and that would not be selected had he reported + a cost $c_i'\leq c_i$ (all the other costs staying the same). + + If $i\neq i^*$ and $i$ has been selected, then we are in the case where + $L(x^*) \geq C V(i^*)$ and $i$ was included in the result set by the greedy + part of the mechanism. By reporting a cost $c_i'\leq c_i$, using the + submodularity of $V$, we see that $i$ will satisfy the greedy selection + rule: + \begin{displaymath} + i = \argmax_{j\in\mathcal{N}\setminus S} \frac{V(S\cup\{j\}) + - V(S)}{c_j} + \end{displaymath} + in an earlier iteration of the greedy heuristic. Let us denote by $S_i$ + (resp. $S_i'$) the set to which $i$ is added when reporting cost $c_i$ + (resp. $c_i'$). We have $S_i'\subset S_i$. Moreover: + \begin{align*} + c_i' & \leq c_i \leq + \frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})}\\ + & \leq \frac{B}{2}\frac{V(S_i'\cup\{i\})-V(S_i')}{V(S_i'\cup\{i\})} + \end{align*} + Hence $i$ will still be included in the result set. + + If $i = i^*$, $i$ is included iff $L(x^*) \leq C V(i^*)$. Reporting $c_i'$ + instead of $c_i$ does not change the value $V(i^*)$ nor $L(x^*)$ (which is + computed over $\mathcal{N}\setminus\{i^*\}$). Thus $i$ is still included by + reporting a different cost. +\end{proof} + +\begin{lemma} +The mechanism is budget feasible. +\end{lemma} + +The proof is the same as in Chen and is given here for the sake of +completeness. +\begin{proof} + +\end{proof} + +Using the characterization of the threshold payments from Singer TODO, we can +prove individual rationality similarly to Chen TODO. +\begin{lemma} +The mechanism is individually rational +\end{lemma} + +\begin{proof} + +\end{proof} + +The following lemma requires to have a careful look at the relaxation function +we chose in the mechanism. The next section will be dedicated to studying this +relaxation and will contain the proof of the following lemma: +\begin{lemma} + We have: + \begin{displaymath} + OPT(L_\mathcal{N}, B) \leq \frac{1}{C_\mu}\big(2 OPT(V,\mathcal{N},B) + + \max_{i\in\mathcal{N}}V(i)\big) + \end{displaymath} +\end{lemma} + +\begin{lemma} + Let us denote by $S_M$ the set returned by the mechanism. Let us also + write: + \begin{displaymath} + C_{\textrm{max}} = \max\left(1+C,\frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot + C_\mu(e-1) -5e +1}\right)\right) + \end{displaymath} + + Then: + \begin{displaymath} + OPT(V, \mathcal{N}, B) \leq + C_\text{max}\cdot V(S_M) + \end{displaymath} +\end{lemma} + +\begin{proof} + + If the condition on line 3 of the algorithm holds, then: + \begin{displaymath} + V(i^*) \geq \frac{1}{C}L(x^*) \geq + \frac{1}{C}OPT(V,\mathcal{N}\setminus\{i\}, B) + \end{displaymath} + + But: + \begin{displaymath} + OPT(V,\mathcal{N},B) \leq OPT(V,\mathcal{N}\setminus\{i\}, B) + V(i^*) + \end{displaymath} + + Hence: + \begin{displaymath} + V(i^*) \geq \frac{1}{C+1} OPT(V,\mathcal{N}, B) + \end{displaymath} + + If the condition of the algorithm does not hold: + \begin{align*} + V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C\cdot C_\mu} + \big(2 OPT(V,\mathcal{N}, B) + V(i^*)\big)\\ + & \leq \frac{1}{C\cdot C_\mu}\left(\frac{2e}{e-1}\big(3 V(S_M) + + 2 V(i^*)\big) + + V(i^*)\right) + \end{align*} + + Thus: + \begin{align*} + V(i^*) \leq \frac{6e}{C\cdot C_\mu(e-1)- 5e + 1} V(S_M) + \end{align*} + + Finally, using again that: + \begin{displaymath} + OPT(V,\mathcal{N},B) \leq \frac{e}{e-1}\big(3 V(S_M) + 2 V(i^*)\big) + \end{displaymath} + + We get: + \begin{displaymath} + OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot + C_\mu(e-1) -5e +1}\right) V(S_M) + \end{displaymath} +\end{proof} + +The optimal value for $C$ is: +\begin{displaymath} + C^* = \arg\min C_{\textrm{max}} +\end{displaymath} + +This equation has two solutions. Only one of those is such that: +\begin{displaymath} + C\cdot C_\mu(e-1) -5e +1 \geq 0 +\end{displaymath} +which is needed in the proof of the previous lemma. Computing this solution, +we can state the main result of this section. + +\subsection{Relaxations of the value function} + +To prove lemma TODO, we will use a general method called pipage rounding, +introduced in TODO. Two consecutive relaxations are used: the one that we are +interested in, whose optimization can be computed efficiently, and the +multilinear extension which presents a \emph{cross-convexity} like behavior +which allows for rounding of fractional solution without decreasing the value +of the objective function and thus ensures a constant approximation of the +value function. The difficulty resides in showing that the ratio of the two +relaxations is bounded. + +We say that $R_\mathcal{N}:[0,1]^n\rightarrow\mathbf{R}$ is a relaxation of the +value function $V$ over $\mathcal{N}$ if it coincides with $V$ at binary +points. Formally, for any $S\subset\mathcal{N}$, let $\mathbf{1}_S$ denote the +indicator vector of $S$. $R_\mathcal{N}$ is a relaxation of $V$ over +$\mathcal{N}$ iff: +\begin{displaymath} + \forall S\subset\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S) +\end{displaymath} + +We can extend the optimisation problem defined above to a relaxation by +extending the cost function: +\begin{displaymath} + \forall \lambda\in[0,1]^n,\; c(\lambda) + = \sum_{i\in\mathcal{N}}\lambda_ic_i +\end{displaymath} +The optimisation problem becomes: +\begin{displaymath} + OPT(R_\mathcal{N}, B) = + \max_{\lambda\in[0,1]^n}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\} +\end{displaymath} +The relaxations we will consider here rely on defining a probability +distribution over subsets of $\mathcal{N}$. + +Let $\lambda\in[0,1]^n$, let us define: +\begin{displaymath} + P_\mathcal{N}^\lambda(S) = \prod_{i\in S}\lambda_i + \prod_{i\in\mathcal{N}\setminus S}(1-\lambda_i) +\end{displaymath} +$P_\mathcal{N}^\lambda(S)$ is the probability of picking the set $S$ if we select +a subset of $\mathcal{N}$ at random by deciding independently for each point to +include it in the set with probability $\lambda_i$ (and to exclude it with +probability $1-\lambda_i$). + +We will consider two relaxations of the value function $V$ over $\mathcal{N}$: +\begin{itemize} + \item the \emph{multi-linear extension} of $V$: + \begin{align*} + F_\mathcal{N}(\lambda) + & = \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[\log\det A(S)\big]\\ + & = \sum_{S\subset\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)\\ + & = \sum_{S\subset\mathcal{N}} P_\mathcal{N}^\lambda(S) \log\det A(S)\\ + \end{align*} + \item the \emph{concave relaxation} of $V$: + \begin{align*} + L_{\mathcal{N}}(\lambda) + & = \log\det \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[A(S)\big]\\ + & = \log\det\left(\sum_{S\subset N} + P_\mathcal{N}^\lambda(S)A(S)\right)\\ + & = \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}} + \lambda_ix_ix_i^*\right)\\ + & \defeq \log\det \tilde{A}(\lambda) + \end{align*} +\end{itemize} + +\begin{lemma} + The \emph{concave relaxation} $L_\mathcal{N}$ is concave\footnote{Hence + this relaxation is well-named!}. +\end{lemma} + +\begin{proof} + This follows from the concavity of the $\log\det$ function over symmetric + positive semi-definite matrices. More precisely, if $A$ and $B$ are two + symmetric positive semi-definite matrices, then: + \begin{multline*} + \forall\alpha\in [0, 1],\; \log\det\big(\alpha A + (1-\alpha) B\big)\\ + \geq \alpha\log\det A + (1-\alpha)\log\det B + \end{multline*} +\end{proof} + +\begin{lemma}[Rounding]\label{lemma:rounding} + For any feasible $\lambda\in[0,1]^n$, there exists a feasible + $\bar{\lambda}\in[0,1]^n$ such that at most one of its component is + fractional, that is, lies in $(0,1)$ and: + \begin{displaymath} + F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda}) + \end{displaymath} +\end{lemma} + +\begin{proof} + We give a rounding procedure which given a feasible $\lambda$ with at least + two fractional components, returns some $\lambda'$ with one less fractional + component, feasible such that: + \begin{displaymath} + F_\mathcal{N}(\lambda) \leq F_\mathcal{N}(\lambda') + \end{displaymath} + Applying this procedure recursively yields the lemma's result. + + Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two + fractional components of $\lambda$ and let us define the following + function: + \begin{displaymath} + F_\lambda(\varepsilon) = F(\lambda_\varepsilon) + \quad\textrm{where} \quad + \lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right) + \end{displaymath} + + It is easy to see that if $\lambda$ is feasible, then: + \begin{multline}\label{eq:convex-interval} + \forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j + \frac{c_j}{c_i}\Big)\Big],\;\\ + \lambda_\varepsilon\;\;\textrm{is feasible} + \end{multline} + + Furthermore, the function $F_\lambda$ is convex, indeed: + \begin{align*} + F_\lambda(\varepsilon) + & = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[ + (\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\ + & + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})\\ + & + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\ + & + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]\\ + \end{align*} + Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is: + \begin{multline*} + \frac{c_i}{c_j}\mathbb{E}_{S'\sim + P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[ + V(S'\cup\{i\})+V(S'\cup\{i\})\\ + -V(S'\cup\{i,j\})-V(S')\Big] + \end{multline*} + which is positive by submodularity of $V$. Hence, the maximum of + $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is + attained at one of its limit, at which either the $i$-th or $j$-th component of + $\lambda_\varepsilon$ becomes integral. +\end{proof} + +\begin{lemma}\label{lemma:relaxation-ratio} + The following inequality holds: + \begin{displaymath} + \forall\lambda\in[0,1]^n,\; + \frac{\log\big(1+\mu\big)}{2\mu} + \,L_\mathcal{N}(\lambda)\leq + F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda) + \end{displaymath} +\end{lemma} + +\begin{proof} + + We will prove that: + \begin{displaymath} + \frac{\log\big(1+\mu\big)}{2\mu} + \end{displaymath} + is a lower bound of the ratio $\partial_i F_\mathcal{N}(\lambda)/\partial_i + L_\mathcal{N}(\lambda)$. + + This will be enough to conclude, by observing that: + \begin{displaymath} + \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)} + \sim_{\lambda\rightarrow 0} + \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F_\mathcal{N}(0)} + {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L_\mathcal{N}(0)} + \end{displaymath} + and that an interior critical point of the ratio + $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is defined by: + \begin{displaymath} + \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)} + = \frac{\partial_i F_\mathcal{N}(\lambda)}{\partial_i + L_\mathcal{N}(\lambda)} + \end{displaymath} + + Let us start by computing the derivatives of $F_\mathcal{N}$ and + $L_\mathcal{N}$ with respect to + the $i$-th component. + + For $F$, it suffices to look at the derivative of + $P_\mathcal{N}^\lambda(S)$: + \begin{displaymath} + \partial_i P_\mathcal{N}^\lambda(S) = \left\{ + \begin{aligned} + & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\; i\in S \\ + & - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\; + i\in \mathcal{N}\setminus S \\ + \end{aligned}\right. + \end{displaymath} + + Hence: + \begin{multline*} + \partial_i F_\mathcal{N} = + \sum_{\substack{S\subset\mathcal{N}\\ i\in S}} + P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)\\ + - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}} + P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\ + \end{multline*} + + Now, using that every $S$ such that $i\in S$ can be uniquely written as + $S'\cup\{i\}$, we can write: + \begin{multline*} + \partial_i F_\mathcal{N} = + \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S\cup\{i\})\\ + - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}} + P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\ + \end{multline*} + + Finally, by using the expression for the marginal contribution of $i$ to + $S$: + \begin{displaymath} + \partial_i F_\mathcal{N}(\lambda) = + \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + P_{\mathcal{N}\setminus\{i\}}^\lambda(S) + \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big) + \end{displaymath} + + The computation of the derivative of $L_\mathcal{N}$ uses standard matrix + calculus and gives: + \begin{displaymath} + \partial_i L_\mathcal{N}(\lambda) + = \mu x_i^* \tilde{A}(\lambda)^{-1}x_i + \end{displaymath} + + Using the following inequalities: + \begin{gather*} + \forall S\subset\mathcal{N}\setminus\{i\},\quad + P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq + P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\ + \forall S\subset\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S) + \geq P_\mathcal{N}^\lambda(S)\\ + \forall S\subset\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\ + \end{gather*} + we get: + \begin{align*} + \partial_i F_\mathcal{N}(\lambda) + & \geq \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + P_\mathcal{N}^\lambda(S) + \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\ + & \geq \frac{1}{2} + \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + P_\mathcal{N}^\lambda(S) + \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\ + &\hspace{-3.5em}+\frac{1}{2} + \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + P_\mathcal{N}^\lambda(S\cup\{i\}) + \log\Big(1 + \mu x_i^*A(S\cup\{i\})^{-1}x_i\Big)\\ + &\geq \frac{1}{2} + \sum_{S\subset\mathcal{N}} + P_\mathcal{N}^\lambda(S) + \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\ + \end{align*} + + Using that $A(S)\geq I_d$ we get that: + \begin{displaymath} + \mu x_i^*A(S)^{-1}x_i \leq \mu + \end{displaymath} + + Moreover: + \begin{displaymath} + \forall x\leq\mu,\; \log(1+x)\geq + \frac{\log\big(1+\mu\big)}{\mu} x + \end{displaymath} + + Hence: + \begin{displaymath} + \partial_i F_\mathcal{N}(\lambda) \geq + \frac{\log\big(1+\mu\big)}{2\mu} + x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i + \end{displaymath} + + Finally, using that the inverse is a matrix convex function over symmetric + positive definite matrices: + \begin{align*} + \partial_i F_\mathcal{N}(\lambda) &\geq + \frac{\log\big(1+\mu\big)}{2\mu} + x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i\\ + & \geq \frac{\log\big(1+\mu\big)}{2\mu} + \partial_i L_\mathcal{N}(\lambda) + \end{align*} +\end{proof} + +We can now prove lemma TODO from previous section. + +\begin{proof} + Let us consider a feasible point $\lambda^*\in[0,1]^n$ such that $L_\mathcal{N}(\lambda^*) + = OPT(L_\mathcal{N}, B)$. By applying lemma~\ref{lemma:relaxation-ratio} + and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most + one fractional component such that: + \begin{equation}\label{eq:e1} + L_\mathcal{N}(\lambda^*) \leq \frac{1}{C_\mu} + F_\mathcal{N}(\bar{\lambda}) + \end{equation} + + Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$ + denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$. + Using the fact that $F_\mathcal{N}$ is linear with respect to the $i$-th + component and is a relaxation of the value function, we get: + \begin{displaymath} + F_\mathcal{N}(\bar{\lambda}) = V(S) +\lambda_i V(S\cup\{i\}) + \end{displaymath} + + Using the submodularity of $V$: + \begin{displaymath} + F_\mathcal{N}(\bar{\lambda}) \leq 2 V(S) + V(i) + \end{displaymath} + + Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and + $V(S)\leq OPT(V,\mathcal{N}, B)$. Hence: + \begin{equation}\label{eq:e2} + F_\mathcal{N}(\bar{\lambda}) \leq 2 OPT(V,\mathcal{N}, B) + + \max_{i\in\mathcal{N}} V(i) + \end{equation} + + Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results. +\end{proof} + \section{General setup} \section{Conclusion} |
