summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--abstract.tex2
-rw-r--r--main.tex4
-rw-r--r--proofs.tex15
3 files changed, 10 insertions, 11 deletions
diff --git a/abstract.tex b/abstract.tex
index eebeb97..a92ad45 100644
--- a/abstract.tex
+++ b/abstract.tex
@@ -18,7 +18,7 @@ We initiate the study of budgeted mechanisms for experimental design. In this se
Each subject $i$ declares associated cost $c_i >0$ to be part of the experiment, and must be paid at least their cost. Further, the subjects
are \emph{strategic} and may lie about their costs . In particular, we formulate the {\em Strategic Experimental Design Problem} (\SEDP) as finding a set $S$ of subjects for the experiment that maximizes $V(S) = \log\det(I_d+\sum_{i\in S}x_i\T{x_i})$ under the constraint $\sum_{i\in S}c_i\leq B$; our objective function corresponds to the information gain in parameter $\beta$ that is learned through linear regression methods, and is related to the so-called $D$-optimality criterion.
-We present a deterministic, polynomial time, truthful, budget feasible mechanism for \EDP{}.
+We present a deterministic, polynomial time, truthful, budget feasible mechanism for \SEDP{}.
By applying previous work on budget feasible mechanisms with submodular objective, one could have derived either an exponential time deterministic mechanism or a randomized polynomial time mechanism. Our mechanism yields a constant factor ($\approx 12.68$) approximation, and we show that no truthful, budget-feasible algorithms are possible within a factor $2$ approximation. We also show how to apply our approach to a wide class of learning problems.
diff --git a/main.tex b/main.tex
index 9891fb3..981eb05 100644
--- a/main.tex
+++ b/main.tex
@@ -148,8 +148,8 @@ We can now state our main result:
\begin{align*}
OPT
& \leq \frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)} V(S^*)+
- \varepsilon\\
- & \simeq 12.98V(S^*) + \varepsilon
+ \varepsilon
+ \simeq 12.98V(S^*) + \varepsilon
\end{align*}
\end{theorem}
The value of the constant $C$ is given by \eqref{eq:constant} in
diff --git a/proofs.tex b/proofs.tex
index c951175..28f13ac 100644
--- a/proofs.tex
+++ b/proofs.tex
@@ -316,14 +316,13 @@ In particular,
\begin{gather*}
\forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1}
\end{gather*}
-as $A(S)\leq A(S\cup\{i\})$. Observe that
- \begin{gather*}
- \forall S\subseteq\mathcal{N}\setminus\{i\},\quad
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\}),\\
- \forall S\subseteq\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
- \geq P_\mathcal{N}^\lambda(S).
- \end{gather*}
+as $A(S)\preceq A(S\cup\{i\})$. Observe that
+ % \begin{gather*}
+ % \forall
+$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})$ for all $S\subseteq\mathcal{N}\setminus\{i\}$, and
+ % ,\\
+ $P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S),$ for all $S\subseteq\mathcal{N}$.
+ %\end{gather*}
Hence,
\begin{align*}
\partial_i F(\lambda)